Abstract

We present a single-channel photonic band gap fiber design allowing for guiding light inside a water core, which is surrounded by solid microstructured cladding, consisting of an array of high refractive index strands in silica. We address all relevant properties and show that the microstructure substantially reduces loss. We also introduce a ray reflection model, matching numerical modelling and allowing for time-effective large-scale parameter sweeps. Our single channel fiber concept is particularly valuable for applications demanding fast and reliable injection of liquids into the core, with potential impact in fields such as optofluidics, spectroscopy or bioanalytics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers

Matthias Zeisberger, Alessandro Tuniz, and Markus A. Schmidt
Opt. Express 24(18) 20515-20528 (2016)

Identification of zero density of states domains in band gap fibers using a single binary function

Guangrui Li and Markus A. Schmidt
Opt. Express 24(14) 16212-16221 (2016)

Higher-order core-guided modes in two-dimensional photonic bandgap fibers

Vincent Pureur and Boris T. Kuhlmey
J. Opt. Soc. Am. B 29(7) 1750-1765 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12(1), 69–74 (2004).
    [Crossref] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  3. A. A Asatryan, S. Fabre, K. Busch, R. C McPhedran, L. C Botten, C. M. de Sterke, and N. A. P. Nicorovici, “Two-dimensional local density of states in two-dimensional photonic crystals,” Opt. Express 8(3), 191–196 (2001).
    [Crossref] [PubMed]
  4. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
    [Crossref] [PubMed]
  5. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
    [Crossref] [PubMed]
  6. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [Crossref] [PubMed]
  7. I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber,” Opt. Lett. 37(13), 2499–2501 (2012).
    [Crossref] [PubMed]
  8. I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
    [Crossref] [PubMed]
  9. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
    [Crossref] [PubMed]
  10. C. Markos, K. Vlachos, and G. Kakarantzas, “Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber,” Opt. Mater. Express 2(7), 929–941 (2012).
    [Crossref]
  11. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
    [Crossref] [PubMed]
  12. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [Crossref]
  13. R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
    [Crossref] [PubMed]
  14. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [Crossref] [PubMed]
  15. C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
    [Crossref] [PubMed]
  16. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35(16), 2813–2815 (2010).
    [Crossref] [PubMed]
  17. L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
    [Crossref] [PubMed]
  18. L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
    [Crossref] [PubMed]
  19. P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  20. D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
    [Crossref]
  21. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
    [Crossref] [PubMed]
  22. A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
    [Crossref]
  23. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref] [PubMed]
  24. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  25. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  26. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
    [Crossref] [PubMed]
  27. F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the Performances of Hollow Antiresonant Fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), Mo.2.LeCervin.2.
    [Crossref]
  28. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  29. A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
    [Crossref] [PubMed]
  30. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  31. S. F. Gao, Y. Y. Wang, X. L. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24(13), 14801–14811 (2016).
    [Crossref] [PubMed]
  32. H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
    [Crossref] [PubMed]
  33. G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
    [Crossref]
  34. M. Zeisberger, A. Tuniz, and M. A. Schmidt, “Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers,” Opt. Express 24(18), 20515–20528 (2016).
    [Crossref] [PubMed]
  35. A. Tuniz, M. Zeisberger, and M. A. Schmidt, “Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers,” Opt. Express 24(14), 15702–15709 (2016).
    [Crossref] [PubMed]
  36. S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
    [Crossref]
  37. S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
    [Crossref] [PubMed]
  38. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
    [Crossref] [PubMed]
  39. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]
  40. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [Crossref] [PubMed]
  41. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  42. J. M. Pottage, D. M. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
    [Crossref] [PubMed]
  43. J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express 16(23), 18631–18645 (2008).
    [Crossref] [PubMed]
  44. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17(12), 10082–10090 (2009).
    [Crossref] [PubMed]
  45. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  46. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [Crossref] [PubMed]
  47. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  48. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  49. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref] [PubMed]
  50. C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790 (2016).
    [Crossref]
  51. P. Uebel, M. A. Schmidt, S. T. Bauerschmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103, 021101 (2013).
    [Crossref]
  52. P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
    [Crossref] [PubMed]
  53. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  54. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).
  55. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref] [PubMed]
  56. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gerome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  57. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
    [Crossref] [PubMed]
  58. L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
    [Crossref] [PubMed]
  59. D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
    [Crossref]

2017 (5)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gerome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

2016 (5)

2015 (6)

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

2014 (8)

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
[Crossref] [PubMed]

I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (7)

2011 (3)

2010 (3)

2009 (2)

2008 (4)

2006 (3)

2005 (2)

2004 (2)

2003 (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

J. M. Pottage, D. M. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

2001 (2)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Abdolvand, A.

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Adam, J. L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Amezcua, R.

Amsanpally, A.

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
[Crossref] [PubMed]

Asatryan, A. A

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Ballato, J.

Bartelt, H.

Bauerschmidt, S. T.

P. Uebel, M. A. Schmidt, S. T. Bauerschmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103, 021101 (2013).
[Crossref]

Baz, A.

Benabid, F.

Bi, W.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
[Crossref]

Bierlich, J.

Bird, D.

Bird, D. M.

Birks, T.

Birks, T. A.

Blondy, J. M.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Botten, L. C

Brilland, L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Broderick, N. G. R.

Busch, K.

Bykov, D. S.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Caillaud, C.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

Calvez, L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Chafer, M.

Chan, C. C.

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

Chang, W.

Chemnitz, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Cordeiro, C. M. B.

Coulombier, Q.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Da, N.

Daw, M.

de Sterke, C. M.

Debord, B.

Ding, W.

Dong, X. Y.

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

Dudley, J. M.

Ellison, M.

Engeness, T.

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Fabre, S.

Farr, L.

Fermann, M. E.

Fink, Y.

Flanagan, J. C.

Foy, P.

Frosch, T.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

Frosz, M.

Fu, G.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
[Crossref]

Fu, X.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
[Crossref]

Gaida, C.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Gao, S. F.

Gebhardt, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

George, A. K.

Gerome, F.

Gérôme, F.

Ghenuche, P.

Gong, H. P.

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Granzow, N.

Hartl, I.

Hartung, A.

Hawkins, T.

Hayes, J. R.

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Healy, N.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Hedley, T.

Hedley, T. D.

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Holzer, P.

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Hugonnot, E.

Ibanescu, M.

Jacobs, S.

Jain, C.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790 (2016).
[Crossref]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Jiang, X.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

Joly, N.

Joly, N. Y.

Kakarantzas, G.

Knight, J.

Knight, J. C.

Kobelke, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Kokuoz, B.

Konidakis, I.

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Krockel, L.

L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

Kröckel, L.

L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

Lee, H. W.

Lee, K. F.

Lehmann, H.

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

Leindecker, N.

Leon-Saval, S.

Light, P. S.

Limpert, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Liu, X. L.

Luan, F.

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Markos, C.

Mason, M.

Maurel, M.

McMillen, C.

McPhedran, R. C

Mechin, D.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Nicorovici, N. A. P.

Oskooi, A. F.

Peacock, A. C.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Pearce, G. J.

Peng, M.

Pissadakis, S.

Pletz, M. W.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Poletti, F.

Popp, J.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

Pottage, J.

Pottage, J. M.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Powers, D. R.

Prill Sempere, L.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Pureur, V.

Rammler, S.

Rao, A. M.

Renversez, G.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Reppert, J.

Rettenmayr, M.

Reuther, K.

Rice, R. R.

Richardson, D. J.

Rigneault, H.

Roberts, P.

Roberts, P. J.

J. M. Pottage, D. M. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P.

Russell, P. S.

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

J. M. Pottage, D. M. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S. J.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, S. T. Bauerschmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103, 021101 (2013).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
[Crossref] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[Crossref] [PubMed]

Russell, R. F.

Sabert, H.

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Scharrer, M.

Schmidt, M.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Schmidt, M. A.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790 (2016).
[Crossref]

M. Zeisberger, A. Tuniz, and M. A. Schmidt, “Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers,” Opt. Express 24(18), 20515–20528 (2016).
[Crossref] [PubMed]

A. Tuniz, M. Zeisberger, and M. A. Schmidt, “Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers,” Opt. Express 24(14), 15702–15709 (2016).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, S. T. Bauerschmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103, 021101 (2013).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Schmidt, O. A.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Schunemann, P. G.

Schwuchow, A.

Scol, F.

Sharma, S. R.

Shori, R.

Skorobogatiy, M.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Soljacic, M.

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Spittel, R.

St J Russell, P.

Stafsudd, O.

Stolen, R.

Stutzki, F.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Tani, F.

Tomlinson, A.

Toupin, P.

Travers, J. C.

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

Troles, J.

Tuniz, A.

Tünnermann, A.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Tverjanovich, A. S.

Tyagi, H. K.

Uebel, P.

Unterkofler, S.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Vincetti, L.

Vlachos, K.

Vodopyanov, K. L.

Wadsworth, W. J.

Wang, A.

Wang, L.

Wang, P.

Wang, S.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Wang, Y. Y.

Wasserscheid, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Weisberg, O.

Wenger, J.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Wieduwilt, T.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790 (2016).
[Crossref]

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

Williams, D.

Wondraczek, K.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Wondraczek, L.

Wong, W. C.

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

Xie, S.

Yan, D.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Yu, F.

Zeisberger, M.

Zhang, Y. F.

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

Zito, G.

ACS Photonics (1)

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Adv. Mater. Interfaces (1)

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. Russell, P. Wasserscheid, and B. J. M. Etzold, “In situ heterogeneous catalysis monitoring in a hollow-core photonic crystal fiber microflow reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Anal. Chim. Acta (2)

L. Krockel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

L. Kröckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. Uebel, M. A. Schmidt, S. T. Bauerschmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103, 021101 (2013).
[Crossref]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

IEEE Photonics J. (1)

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-Holes Collapse Properties of Photonic Crystal Fiber in Heating Process by CO2 Laser,” IEEE Photonics J. 4(3), 1028–1034 (2012).
[Crossref]

J. Biomed. Opt. (1)

H. P. Gong, C. C. Chan, Y. F. Zhang, W. C. Wong, and X. Y. Dong, “Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing,” J. Biomed. Opt. 16(1), 017004 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Materials (Basel) (1)

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J. L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Nat. Photon (1)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of GHz bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6, 352 (2012).

Nat. Photonics (2)

P. S. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Opt. Express (20)

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express 16(23), 18631–18645 (2008).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref] [PubMed]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17(12), 10082–10090 (2009).
[Crossref] [PubMed]

A. A Asatryan, S. Fabre, K. Busch, R. C McPhedran, L. C Botten, C. M. de Sterke, and N. A. P. Nicorovici, “Two-dimensional local density of states in two-dimensional photonic crystals,” Opt. Express 8(3), 191–196 (2001).
[Crossref] [PubMed]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref] [PubMed]

J. M. Pottage, D. M. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12(1), 69–74 (2004).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
[Crossref] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
[Crossref] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, X. L. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24(13), 14801–14811 (2016).
[Crossref] [PubMed]

A. Tuniz, M. Zeisberger, and M. A. Schmidt, “Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers,” Opt. Express 24(14), 15702–15709 (2016).
[Crossref] [PubMed]

M. Zeisberger, A. Tuniz, and M. A. Schmidt, “Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers,” Opt. Express 24(18), 20515–20528 (2016).
[Crossref] [PubMed]

Opt. Lett. (12)

I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
[Crossref] [PubMed]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber,” Opt. Lett. 37(13), 2499–2501 (2012).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[Crossref] [PubMed]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35(16), 2813–2815 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Optica (2)

Phys. Rev. B (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Talanta (1)

L. Krockel, H. Lehmann, T. Wieduwilt, and M. A. Schmidt, “Fluorescence detection for phosphate monitoring using reverse injection analysis,” Talanta 125, 107–113 (2014).
[Crossref] [PubMed]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the Performances of Hollow Antiresonant Fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), Mo.2.LeCervin.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The water-core all-glass cladding photonic band gap fiber geometry. (a) Sketch of the structure, with the high index strands shown in red, the silica cladding in light blue and the water core in dark blue. (b) Corresponding two dimensional schematic with all relevant parameters and materials indicated. This example includes two rings of high refractive index strands (N = 2).

Fig. 2
Fig. 2

Density of state (DOS) map of the all-solid cladding investigated here (d/Λ = 0.44, (ns = 2.5, nc = 1.47 and nw = 1.33)). The colour scale ranges linearly from low (dark) to high (yellow) values of DOS. Within the grey regions, no cladding states are present, corresponding to domains which allow for photonic band gap guidance at the respective effective index. (a) DOS over a large span of normalized frequencies (i.e., pitch/wavelength ratios). (b) Close-up view of the region in which photonic band gap guidance in water can be achieved (highlighted in magenta). The horizontal dashed green and cyan lines indicate the refractive indices of silica and water, respectively (material dispersions have been neglected).

Fig. 3
Fig. 3

Sketch and two-dimensional schematic of the ray model used to analyse the properties of the leaky modes supported by the water core all-glass cladding photonic band gap fiber (left: cladding; right: reflection of single rays at the water/cladding interface).

Fig. 4
Fig. 4

Spectral distribution of the complex effective index for four different values of core radius (Rs: 11.8µm (green), 17.9µm (red), 23.9µm (blue), 30µm (purple), number of rings N: 6). (a) Relative real and (b) imaginary parts of the effective index. In both plot, the solid and dashed lines refer to the longest and shortest possible core radius (Rl and Rs, respectively; radii defined in Fig. 1(b)), calculated using the ray model introduced in Fig. 3. The circles correspond to Finite-element simulations of the full structure. The regions of exceedingly high loss caused by the coupling of the defect core mode to cladding supermodes have been overlaid by the yellow bars. (c) Spectral distribution of Im(neff) for a silica capillary filled with water with core radii define in Fig. 4(a). The green regions in Fig. 4(b) and 4(c) highlight the domain of PBG guidance of the water-filled all-solid cladding fiber. All results presented refer to the HE11-type mode.

Fig. 5
Fig. 5

Dependency of the imaginary part of neff of the HE11-type mode on various structural parameters at mid-gap frequency (Λ/λ = 0.545; all other parameters are as described in the main text). (a) Im(neff) as function of core radius (number of rings: 6). The red triangles refer to data from FEM simulations, which have been fitted by a polynomial function with the exponent being a fit parameter. The purple line refers to fitted data from the reflection model. All curves presented roughly scale with the cubed inverse of the core radius. (b) Dependency of Im(neff) on number of strand rings N in the cladding (Rs = 17.9µm). Different configurations (i.e., no. of rings (red circles)) have been calculated and fitted by an exponential function. The purple line refers to corresponding results from the ray model.

Fig. 6
Fig. 6

Dependency of modal attenuation of the HE11 mode on normalized frequency (Λ/λ) and d/Λ calculated using the ray model (R = 50µm, the logarithmic color scale on the right is in units of dB/m). Low loss is obtained within the yellow regions, whereas the loss is high elsewhere, particular close to the resonances. The horizontal red dashed line corresponds to the geometry investigated in Figs. 4 and 5 (diameter/pitch = 0.44), with the corresponding spectral distribution of the modal attenuation (in frequency domain) in units of dB/m shown in (b).

Fig. 7
Fig. 7

Spectral distribution of the complex effective index for the three lowest order modes for a core radius of Rs = 17.9µm (red: HE11, green: TE01, blue: TM01). (a) Relative real and (b) imaginary part of the effect index. In both plot, the solid (dashed) lines refer to the longest (shortest) possible core radius, Rl and Rs, respectively (radii defined in Fig. 1(b)), calculated using the ray model, whereas the circles stand for Finite-Element calculations. The high loss regions caused by supermode coupling have been overlaid by the yellow bars to improve readability. The inset show the dependence of the imaginary part of the effective index on the ratio of Λ and g (grey vertical dashed line indicates the situation of Λ/g = 2, which is used throughout this work) at the mid-gap normalized frequency of the HE11 mode (Λ/λ = 0.54). The three images on the right show spatial Poynting vector distributions (decadic logarithmic color code; white: 1, dark: 5·10−5) of the HE11 mode at three selected normalized frequencies (top: Λ/λ = 0.47, middle: Λ/λ = 0.54 (mid gap frequency), bottom: Λ/λ = 0.59).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A=1|r | 2 =Vψ+W ψ 2 +Ο ( ψ ) 3 ,
ϕ ref =argr= V ϕ ψ+ W ϕ ψ 2 +Ο ( ψ ) 3 .
κ= j R ,j={ j 1n T E 0n j m1,n H E mn j m+1,n E H mn ,
n eff 0 = n w [ 1 j 2 2 k w 2 R 2 +Ο ( 1 k w R ) 4 ].
n eff = n w [ V j 2 4 k w 3 R 3 + W j 3 4 k w 4 R 4 +Ο( 1 k w 5 R 5 ) ].
n eff = n w [ 1 j 2 2 k w 2 R 2 + V ϕ j 2 2 k w 3 R 3 +Ο ( 1 k w R ) 4 ].

Metrics