Abstract

We introduce the concept of a miniaturized compound refractive X-ray zoom lens consisting of SU-8 lenses fabricated by deep X-ray lithography. The focal length can be varied by changing the number of lens elements placed in the beam. We use suitable actuators to move single lens elements reversibly out of the beam. The X-ray zoom lens can accept different X-ray energies while keeping a fixed working distance, or vary the focal distance for a fixed energy. The latter is useful in tuning the magnification factor in full field microscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray focusing with compound lenses made from beryllium

H. R. Beguiristain, J. T. Cremer, M. A. Piestrup, C. K. Gary, and R. H. Pantell
Opt. Lett. 27(9) 778-780 (2002)

Microfocusing transfocator for 1D and 2D compound refractive lenses

A. V. Zozulya, S. Bondarenko, A. Schavkan, F. Westermeier, G. Grübel, and M. Sprung
Opt. Express 20(17) 18967-18976 (2012)

Injection molded polymeric hard X-ray lenses

F. Stöhr, H. Simons, A. C. Jakobsen, C. H. Nielsen, J. Michael-Lindhard, F. Jensen, H. F. Poulsen, O. Hansen, and J. Hübner
Opt. Mater. Express 5(12) 2804-2811 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Tomie, “X-ray lens,” Japanese patent 6–045288 (February 18, 1994), U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).
  2. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
    [Crossref]
  3. B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
    [Crossref]
  4. B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
    [Crossref] [PubMed]
  5. A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
    [Crossref]
  6. B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
    [Crossref]
  7. Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
    [Crossref]
  8. F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
    [Crossref]
  9. E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
    [Crossref]
  10. V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
    [Crossref]
  11. A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
    [Crossref]
  12. H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
    [Crossref]
  13. C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
    [Crossref] [PubMed]
  14. F. Marschall, Entwicklung Eines Röntgenmikroskops für Photonenenergien von 15 keV bis 30 keV (KIT Scientific Publishing, 2014).
  15. G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
    [Crossref] [PubMed]
  16. G. M. A. Duller, “F-Switch: Novel Random Access Manipulator for Large Numbers of Compound Refractive Lenses,” MEDSI 2016Conf Proc WEPE22 (to be published).
  17. V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
    [Crossref]
  18. A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
    [Crossref]
  19. V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
    [Crossref]
  20. V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
    [Crossref]
  21. E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html
  22. S. G. Lipson, D. S. Tannhauser, and H. S. Lipson, Optical Physics, 3rd edition (Cambridge University, 1995).

2016 (1)

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

2014 (1)

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

2011 (1)

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

2009 (2)

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

2008 (1)

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

2007 (1)

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

2005 (1)

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref] [PubMed]

2004 (2)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

2003 (4)

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

2002 (1)

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

2001 (1)

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Achenbach, S.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

Baron, A. Q. R.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Benner, B.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Bozovic, N.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

Bytchkov, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

Curfs, C.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

David, C.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Detlefs, C.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

DiMichiel, M.

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

Drakopoulos, M.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Duller, G. M. A.

G. M. A. Duller, “F-Switch: Novel Random Access Manipulator for Large Numbers of Compound Refractive Lenses,” MEDSI 2016Conf Proc WEPE22 (to be published).

Evans-Lutterodt, K.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

Friis Poulsen, H.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Gerhardus, A.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Gleyzolle, H.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Göttert, J.

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

Greving, I.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Grigoriev, M.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Gunzler, T. F.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

Günzler, T. F.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Hansen, O.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Hoszowska, J.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Ishii, M.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Ishikawa, T.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Jensen, F.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Kluge, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Kohn, V. G.

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

Kuhlmann, M.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Kurapova, O.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Last, A.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

Lengeler, B.

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref] [PubMed]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Marschall, F.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Meyer, J.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Michael-Lindhard, J.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Mohr, J.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Nazmo, V.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Nazmov, V.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

Nhammer, B.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Ogurreck, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Reznikova, E.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Rossat, M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

Rothuizen, H.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Saile, V.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Schroer, C. G.

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref] [PubMed]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

Shimomura, O.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Simionovici, A.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Simon, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

Simons, H.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Snigirev, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Snigireva, I.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Somogyi, A.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

Stein, A.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

Stöhr, F.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Taylor, A.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

Vaughan, G.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

Vaughan, G. B. M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Vogt, H.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Weitkamp, T.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

Wright, J.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

Wright, J. P.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Zimprich, C.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive X-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

J. Exp. Theor. Phys. (1)

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

J. Phys. Conf. Ser. (3)

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).
[Crossref]

J. Synchrotron Radiat. (2)

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Günzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive X-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26(1), 122–127 (2008).
[Crossref]

Microelectron. Eng. (1)

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67–68, 453–460 (2003).
[Crossref]

Microsyst. Technol. (1)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

Nature (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (2)

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res. A 582(1), 120–122 (2007).
[Crossref]

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Opt. Commun. (2)

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

Phys. Rev. Lett. (1)

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmo, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Other (5)

G. M. A. Duller, “F-Switch: Novel Random Access Manipulator for Large Numbers of Compound Refractive Lenses,” MEDSI 2016Conf Proc WEPE22 (to be published).

F. Marschall, Entwicklung Eines Röntgenmikroskops für Photonenenergien von 15 keV bis 30 keV (KIT Scientific Publishing, 2014).

T. Tomie, “X-ray lens,” Japanese patent 6–045288 (February 18, 1994), U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).

E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html

S. G. Lipson, D. S. Tannhauser, and H. S. Lipson, Optical Physics, 3rd edition (Cambridge University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Two SU-8-lens halves mounted with one half rotated by 90° with respect to the other around the optical axis for point focus imaging.

Fig. 2
Fig. 2

Principle of an X-ray zoom lens made out of SU-8 CRLs from KIT/IMT with all lens elements in the beam (right) and four elements of each half lens bent out of the beam (left); one lens element is 790 µm long.

Fig. 3
Fig. 3

CRL-layout 1405_00_A0, #10 of the two half lenses dedicated to the bendable vertically focusing (v01 - v18) and horizontally focusing (h01 - h19) silicon stripes.

Fig. 4
Fig. 4

Tunability of the X-ray zoom lens with the CRL-layout 1405_00_A0, #10 for a sample distance ds of 1 m and exemplary chosen four image distances di with resulting magnification factor M. The zoom lens configuration is given as a function of the energy with number of elements N by each step switching off one actuator from source side to detector side.

Fig. 5
Fig. 5

Actuation principle of an X-ray zoom lens with piezo bender actuator on silicon stripes holding the CRL elements.

Fig. 6
Fig. 6

Line focus CRL row glued on a Si-wafer, cut with a wafer saw to 19 silicon stripes (h01-h19) and connected with a glued silicon stripe at the opposite end.

Fig. 7
Fig. 7

Mounting setup of a zoom lens with stages of six degrees of freedom (left) and model of a zoom lens with the CRL position (right).

Fig. 8
Fig. 8

Complete zoom lens with point focus mounted at an adapter for the ESRF beamline ID01.

Fig. 9
Fig. 9

Logic for one switching channel for a piezo bender actuator with 200 V (left) and channel matrix of JK-flip-flops as an interface between microcontroller and actuators (right).

Fig. 10
Fig. 10

Alignment of the point focus zoom lens at ESRF ID01 at E = 10 keV.

Fig. 11
Fig. 11

Simplified schematics of an X-ray zoom lens with point focus measured with knife-edge scan.

Fig. 12
Fig. 12

Measurement of image distance and of the focal spot size in vertical and horizontal direction in configuration M1 at E = 10 keV.

Tables (2)

Tables Icon

Table 1 Results of the optical properties of CRL layout 1405_00_A0, #10 at PETRA III, P05 at 18.4 keV.

Tables Icon

Table 2 Results of first measurements of a point focus zoom lens at ESRF, ID01 with simulated image distance and calculated focal spot sizes compared to measured values in five configurations at 10 keV and 19.5 keV.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f= R 2δN + L 6 .
n=1δ+iβ.
δ= 0.00027142/keV² (E/keV)² .
N Ph = k=1 n ( n k ) = 2 n 1.
σ min.phys = d i h o d o
σ min.diff = λ NA .
σ min.astigmatic = A eff Δf 2f
τ=RC,

Metrics