Abstract

Interpixel cross talk decreases the quality of a reconstructed signal in holographic data storage and imposes a limitation on its storage capacity. To reduce the interpixel cross talk, an orthogonal polarization encoding method is proposed. In the proposed method, the polarization state of each pixel is set to be orthogonal with that of surrounding pixels. This prevents the interference between nearest-neighboring pixels and significantly reduces the gross of the interpixel cross talk. The quality of the data page obtained with the proposed method is numerically and experimentally evaluated. Those results suggest that the proposed method can improve the quality of a reconstructed signal.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of multilevel phase masks on interpixel cross talk in digital holographic storage

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla
Appl. Opt. 36(14) 3107-3115 (1997)

Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems

María-P. Bernal, Geoffrey W. Burr, Hans Coufal, and Manuel Quintanilla
Appl. Opt. 37(23) 5377-5385 (1998)

Phase-image-based sparse-gray-level data pages for holographic data storage

Bhargab Das, Joby Joseph, and Kehar Singh
Appl. Opt. 48(28) 5240-5250 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
    [Crossref]
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
    [Crossref]
  3. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, H. Kikuchi, N. Shimidzu, and O. Matoba, “Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory,” Appl. Opt. 50(16), 2361–2369 (2011).
    [Crossref] [PubMed]
  4. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
    [Crossref] [PubMed]
  5. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
    [Crossref]
  6. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
    [Crossref] [PubMed]
  7. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
    [Crossref]
  8. G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
    [Crossref]
  9. T. Nobukawa and T. Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Optics Express,  24(18), 21001–21011 (2016).
    [Crossref] [PubMed]
  10. T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
    [Crossref]
  11. J. Hong, I. McMichael, and J. Ma, “Influence of phase masks on cross talk in holographic memory,” Opt. Lett. 21(20), 1694–1696 (1996).
    [Crossref] [PubMed]
  12. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36(14), 3107–3115 (1997).
    [Crossref] [PubMed]
  13. M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37(23) 5377–5385 (1998).
    [Crossref]
  14. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39(35), 6681–6688 (2000).
    [Crossref]
  15. K. Nishimoto, F. Naito, and M. Yamamoto, “Soft-decision Viterbi decoding for 2/4 modulation code in holographic memory,” Jpn. J. Appl. Phys. 45(5A), 4102–4106 (2006).
    [Crossref]
  16. M. Kato and Y. Okino, “Speckle reduction by double recorded holograms,” Appl. Opt. 12(6), 1199–1201 (1973).
    [Crossref] [PubMed]
  17. L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge University, 2009).
    [Crossref]
  18. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  19. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9(3), 695–700 (1970).
    [Crossref] [PubMed]
  20. V. Vadde, B. V. K. Vijaya Kumer, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure of merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
    [Crossref]
  21. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [Crossref] [PubMed]
  22. I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Jones matrix treatment for optical Fourier processors with structured polarization,” Opt. Express 19(5), 4583–4594 (2011).
    [Crossref] [PubMed]
  23. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21(18), 20692–20706 (2013).
    [Crossref] [PubMed]
  24. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express 20(1), 364–376 (2012).
    [Crossref] [PubMed]
  25. T. Nobukawa, T. Fukuda, D. Barada, and T. Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41(21), 4919–4922 (2016).
    [Crossref] [PubMed]
  26. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  27. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
    [Crossref]
  28. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref]
  29. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
    [Crossref]
  30. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38(18), 3546–3549 (2013).
    [Crossref] [PubMed]
  31. T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
    [Crossref] [PubMed]
  32. T. Nobukawa and T. Nomura, “Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density,” Opt. Express 25(2), 1326–1338 (2017).
    [Crossref] [PubMed]
  33. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.
  34. T. Ando, K. Masaki, and T. Shimizu, “Page data multiplexing for vector wave memories having polarization recording material doped with aromatic ketone derivative,” Jpn. J. Appl. Phys. 52(9S2), 09LD15 (2013).
    [Crossref]
  35. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.
  36. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  37. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31(9), 1208–1210 (2006).
    [Crossref] [PubMed]
  38. C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15(26), 18111–18118 (2007).
    [Crossref] [PubMed]
  39. T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
    [Crossref] [PubMed]
  40. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
    [Crossref] [PubMed]
  41. J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
    [Crossref]
  42. H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, and C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
    [Crossref] [PubMed]
  43. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, and K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain,” Opt. Lett. 24(18), 1269–1271 (1999).
    [Crossref]
  44. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  45. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
    [Crossref] [PubMed]
  46. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
    [Crossref] [PubMed]
  47. K. Kawano, J. Minabe, T. Ishii, T. Maruyama, and S. Yasuda, “Polarization encoding for digital holographic storage,” Jpn. J. Appl. Phys. 41(3B), 1855–1859 (2002).
    [Crossref]
  48. H. Gu, S. Yin, Q. Tan, L. Cao, Q. He, and G. Jin, “Improving signal-to-noise ratio by use of a cross-shaped aperture in the holographic data storage system,” Appl. Opt. 48(32), 6234–6240 (2009).
    [Crossref] [PubMed]

2017 (2)

2016 (4)

T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
[Crossref] [PubMed]

T. Nobukawa, T. Fukuda, D. Barada, and T. Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41(21), 4919–4922 (2016).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Optics Express,  24(18), 21001–21011 (2016).
[Crossref] [PubMed]

T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
[Crossref]

2015 (2)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (2)

I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express 20(1), 364–376 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (1)

2008 (1)

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
[Crossref]

2007 (2)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15(26), 18111–18118 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

2004 (2)

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
[Crossref] [PubMed]

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

2002 (1)

K. Kawano, J. Minabe, T. Ishii, T. Maruyama, and S. Yasuda, “Polarization encoding for digital holographic storage,” Jpn. J. Appl. Phys. 41(3B), 1855–1859 (2002).
[Crossref]

2000 (1)

1999 (2)

1998 (3)

1997 (1)

1996 (2)

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

1991 (1)

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
[Crossref]

1973 (1)

1970 (1)

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Anderson, K.

Ando, T.

T. Ando, K. Masaki, and T. Shimizu, “Page data multiplexing for vector wave memories having polarization recording material doped with aromatic ketone derivative,” Jpn. J. Appl. Phys. 52(9S2), 09LD15 (2013).
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

Arrizón, V.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Baba, K.

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Barada, D.

T. Nobukawa, T. Fukuda, D. Barada, and T. Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41(21), 4919–4922 (2016).
[Crossref] [PubMed]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

Barbastathis, G.

Barking, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Bent, N.

Berger, G.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
[Crossref]

Bernal, M.-P.

Bolduc, E.

Boyd, R. W.

Bunsen, M.

T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
[Crossref]

Burckhardt, C. B.

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Burr, G. W.

Campos, J.

Cao, L.

Carrada, R.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cheng, W.

Chi, S.

Cho, S. L.

Chou, S. F.

Cottrell, D. M.

Coufal, H.

Curtis, K.

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
[Crossref] [PubMed]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Davis, J. A.

Denz, C.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
[Crossref]

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
[Crossref]

Dhar, L.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Dietz, M.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Fan, F.

Fujimura, R.

Fukuda, T.

T. Nobukawa, T. Fukuda, D. Barada, and T. Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41(21), 4919–4922 (2016).
[Crossref] [PubMed]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

González, L. A.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

Grygier, R. K.

Gu, C.

Gu, H.

Han, W.

Hayasaki, Y.

He, Q.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Hernandez, T. M.

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Hoffnagle, J. A.

Hong, J.

Hong, Y.

Horimai, H.

Hsieh, S. C.

Hsu, K. Y.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Huang, Y.

Ichimura, S.

Iemmi, C.

Ishii, N.

Ishii, T.

Jefferson, C. M.

Jin, G.

Kamijo, K.

Kang, G.

Kanno, K.

T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
[Crossref]

Karimi, E.

Kato, M.

Kawano, K.

Kikuchi, H.

King, B. M.

Kinoshita, N.

Kuroda, K.

Levene, M.

Li, C.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, J.

Li, P.

Lin, C. M.

Lin, J. H.

Lin, S. H.

Lin, X.

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Liu, Y.

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Lustrac, A. D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Ma, J.

Maruyama, T.

K. Kawano, J. Minabe, T. Ishii, T. Maruyama, and S. Yasuda, “Polarization encoding for digital holographic storage,” Jpn. J. Appl. Phys. 41(3B), 1855–1859 (2002).
[Crossref]

Masaki, K.

T. Ando, K. Masaki, and T. Shimizu, “Page data multiplexing for vector wave memories having polarization recording material doped with aromatic ketone derivative,” Jpn. J. Appl. Phys. 52(9S2), 09LD15 (2013).
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

Matoba, O.

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

McMichael, I.

Minabe, J.

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Moreno, I.

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Muroi, T.

Naito, F.

K. Nishimoto, F. Naito, and M. Yamamoto, “Soft-decision Viterbi decoding for 2/4 modulation code in holographic memory,” Jpn. J. Appl. Phys. 45(5A), 4102–4106 (2006).
[Crossref]

Neifeld, M. A.

Niitsu, T.

Nikolova, L.

L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge University, 2009).
[Crossref]

Nishikata, Y.

Nishimoto, K.

K. Nishimoto, F. Naito, and M. Yamamoto, “Soft-decision Viterbi decoding for 2/4 modulation code in holographic memory,” Jpn. J. Appl. Phys. 45(5A), 4102–4106 (2006).
[Crossref]

Nobukawa, T.

Nomura, T.

Ochiai, T.

Oesterschulze, E.

Okino, Y.

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Pauliat, G.

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
[Crossref]

Psaltis, D.

Qiu, C.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Qiu, C. W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Quintanilla, M.

Ramanujam, P. S.

L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge University, 2009).
[Crossref]

Roosen, G.

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
[Crossref]

Ruiz, U.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

Sand, D.

Santamato, E.

Sato, T.

T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
[Crossref]

Shelby, R. M.

Shimidzu, N.

Shimizu, T.

T. Ando, K. Masaki, and T. Shimizu, “Page data multiplexing for vector wave memories having polarization recording material doped with aromatic ketone derivative,” Jpn. J. Appl. Phys. 52(9S2), 09LD15 (2013).
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

Shimura, T.

Sincerbox, G. T.

Sun, C. C.

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

H. Gu, S. Yin, Q. Tan, L. Cao, Q. He, and G. Jin, “Improving signal-to-noise ratio by use of a cross-shaped aperture in the holographic data storage system,” Appl. Opt. 48(32), 6234–6240 (2009).
[Crossref] [PubMed]

Tan, X.

Teng, T. C.

Tsai, M. F.

Uchida, E.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

Vadde, V.

V. Vadde, B. V. K. Vijaya Kumer, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure of merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[Crossref]

Vijaya Kumer, B. V. K.

V. Vadde, B. V. K. Vijaya Kumer, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure of merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[Crossref]

Wang, J.

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Wang, Z.

Wei, H.

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Wu, A.

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Xu, Z.

Yamamoto, M.

K. Nishimoto, F. Naito, and M. Yamamoto, “Soft-decision Viterbi decoding for 2/4 modulation code in holographic memory,” Jpn. J. Appl. Phys. 45(5A), 4102–4106 (2006).
[Crossref]

Yang, Y.

Yasuda, S.

K. Kawano, J. Minabe, T. Ishii, T. Maruyama, and S. Yasuda, “Polarization encoding for digital holographic storage,” Jpn. J. Appl. Phys. 41(3B), 1855–1859 (2002).
[Crossref]

Yatagai, T.

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

Yin, S.

Yu, Y. W.

Yzuel, M. J.

Zang, J.

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Zentgral, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhan, Q.

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Zhang, L.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Zhang, S.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. D. Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Appl. Opt. (12)

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[Crossref]

T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
[Crossref] [PubMed]

C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9(3), 695–700 (1970).
[Crossref] [PubMed]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, H. Kikuchi, N. Shimidzu, and O. Matoba, “Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory,” Appl. Opt. 50(16), 2361–2369 (2011).
[Crossref] [PubMed]

G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36(14), 3107–3115 (1997).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37(23) 5377–5385 (1998).
[Crossref]

B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39(35), 6681–6688 (2000).
[Crossref]

M. Kato and Y. Okino, “Speckle reduction by double recorded holograms,” Appl. Opt. 12(6), 1199–1201 (1973).
[Crossref] [PubMed]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
[Crossref] [PubMed]

H. Gu, S. Yin, Q. Tan, L. Cao, Q. He, and G. Jin, “Improving signal-to-noise ratio by use of a cross-shaped aperture in the holographic data storage system,” Appl. Opt. 48(32), 6234–6240 (2009).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10(11), 115305 (2008).
[Crossref]

J. Opt. Soc. Am. A. (1)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500 (2007).
[Crossref]

Jpn. J. Appl. Phys. (4)

T. Ando, K. Masaki, and T. Shimizu, “Page data multiplexing for vector wave memories having polarization recording material doped with aromatic ketone derivative,” Jpn. J. Appl. Phys. 52(9S2), 09LD15 (2013).
[Crossref]

T. Sato, K. Kanno, and M. Bunsen, “Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage,” Jpn. J. Appl. Phys. 55(9S), 09SA08 (2016).
[Crossref]

K. Nishimoto, F. Naito, and M. Yamamoto, “Soft-decision Viterbi decoding for 2/4 modulation code in holographic memory,” Jpn. J. Appl. Phys. 45(5A), 4102–4106 (2006).
[Crossref]

K. Kawano, J. Minabe, T. Ishii, T. Maruyama, and S. Yasuda, “Polarization encoding for digital holographic storage,” Jpn. J. Appl. Phys. 41(3B), 1855–1859 (2002).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgral, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase,” Opt. Commun. 85, 171–176 (1991).
[Crossref]

Opt. Express (7)

Opt. Lett. (10)

C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[Crossref] [PubMed]

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, and K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain,” Opt. Lett. 24(18), 1269–1271 (1999).
[Crossref]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31(9), 1208–1210 (2006).
[Crossref] [PubMed]

E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38(18), 3546–3549 (2013).
[Crossref] [PubMed]

T. Nobukawa, T. Fukuda, D. Barada, and T. Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41(21), 4919–4922 (2016).
[Crossref] [PubMed]

J. Hong, I. McMichael, and J. Ma, “Influence of phase masks on cross talk in holographic memory,” Opt. Lett. 21(20), 1694–1696 (1996).
[Crossref] [PubMed]

G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
[Crossref]

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
[Crossref] [PubMed]

Opt. Rev (1)

J. Zang, A. Wu, Y. Liu, J. Wang, X. Lin, X. Tan, T. Shimura, and K. Kuroda, “Characteristics of volume polarization holography with linear polarization light,” Opt. Rev,  22(5), 829–831 (2015).
[Crossref]

Opt. Rev. (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Optics Express (1)

T. Nobukawa and T. Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Optics Express,  24(18), 21001–21011 (2016).
[Crossref] [PubMed]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Proc. SPIE (1)

V. Vadde, B. V. K. Vijaya Kumer, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure of merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[Crossref]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Other (4)

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials,” in Proceedings of IEEE 2011 ICO Conference on Information Photonics (IEEE, 2011), 21–22.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “Polarization-sensitive recording medium based on axis-selective photoreaction mechanism,” in Proceedings of International Workshop on Holographic Memories & Display, Digests (2010) paper 15C-1.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge University, 2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of a holographic data storage system.
Fig. 2
Fig. 2 Polarization distribution of (a) conventional and (b) proposed data pages.
Fig. 3
Fig. 3 Spatial frequency bandwidth of conventional and proposed data pages.
Fig. 4
Fig. 4 Sampling period of each polarization state in the proposed data page. (a) Horizontally and (b) vertically polarized beams.
Fig. 5
Fig. 5 Numerical simulation model for evaluating the effect of the interpixel cross talk.
Fig. 6
Fig. 6 Data pages designed with a 1:2 coding. Data page (a) #1, (b) #2, (c) #3, (d) #4, and (e) #5.
Fig. 7
Fig. 7 Numerically low-pass filtered data pages. Conventional data page (a) #1, (b) #2, (c) #3, (d) #4, and (e) #5. Proposed data page (f) #1, (g) #2, (h) #3, (i) #4, and (j) #5.
Fig. 8
Fig. 8 Optical setup for evaluating the effect of the interpixel cross talk on conventional and proposed data pages. HWP, half wave plate; P, polarizer; SF, spatial filter; Li, Lens; SLMi, phase-only spatial light modulator; M, Mirror.
Fig. 9
Fig. 9 Phase holograms for generating the data page #1. (a) Phase hologram displayed on the SLM 1 for demonstrating the conventional method. (b), (c) Phase holograms displayed on the SLM 1 and 2 for demonstrating the proposed method. (d)–(f) Intensity distributions of a generated beam from each phase hologram of (a), (b), and (c), respectively.
Fig. 10
Fig. 10 Experimentally low-pass filtered data pages. Conventional data page (a) #1, (b) #2, (c) #3, (d) #4, and (e) #5. Proposed data page (f) #1, (g) #2, (h) #3, (i) #4, and (j) #5.
Fig. 11
Fig. 11 Phase holograms for generating the data page #1 and a reference beam. (a) Phase hologram displayed on the SLM 1 for demonstrating the conventional method. (b), (c) Phase holograms displayed on the SLM 1 and 2 for demonstrating the proposed method.
Fig. 12
Fig. 12 Reconstructed data pages. Conventional data page (a) #1, (b) #2, (c) #3, (d) #4, and (e) #5. Proposed data page (f) #1, (g) #2, (h) #3, (i) #4, and (j) #5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w = f λ d ,
SNR = μ on μ off ( σ on 2 + σ off 2 ) 1 / 2 ,
( E 1 ( x , y ) E 2 ( x , y ) ) = ( a 1 ( x , y ) exp { i ϕ 1 ( x , y ) } a 2 ( x , y ) exp { i ϕ 2 ( x , y ) } ) ,
ψ n ( x , y ) = a n ( x , y ) { ϕ n ( x , y ) + ϕ c ( x , y ) } ,
SER = E symbol N symbol × 100 [ % ] ,

Metrics