Abstract

A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pseudo-random tool paths for CNC sub-aperture polishing and other applications

Christina R. Dunn and David D. Walker
Opt. Express 16(23) 18942-18949 (2008)

Surface ripple suppression in subaperture polishing with fragment-type tool paths

Zhichao Dong and Weizhi Nai
Appl. Opt. 57(19) 5523-5532 (2018)

Unicursal random maze tool path for computer-controlled optical surfacing

Chunjin Wang, Zhenzhong Wang, and Qiao Xu
Appl. Opt. 54(34) 10128-10136 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16(1), 218–224 (1977).
    [Crossref] [PubMed]
  2. C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
    [Crossref]
  3. C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
    [Crossref] [PubMed]
  4. C. Wang, Z. Wang, and Q. Xu, “Unicursal random maze tool path for computer-controlled optical surfacing,” Appl. Opt. 54(34), 10128–10136 (2015).
    [Crossref] [PubMed]
  5. V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
    [Crossref]
  6. H. Y. Tam and H. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210(5), 807–818 (2010).
    [Crossref]
  7. F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
    [Crossref]
  8. A. Adamatzky, “Growing spanning trees in plasmodium machines,” Kybernetes 37(2), 258–264 (2008).
    [Crossref]
  9. R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
    [Crossref]
  10. A. Beaucamp, Y. Namba, and P. Charlton, “Corrective finishing of extreme ultraviolet photomask blanks by precessed bonnet polisher,” Appl. Opt. 53(14), 3075–3080 (2014).
    [Crossref] [PubMed]
  11. X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” J. Mater. Process. Technol. 209(7), 3665–3673 (2009).
    [Crossref]
  12. H. Y. Tam, H. Cheng, and Z. Dong, “Peano-like paths for subaperture polishing of optical aspherical surfaces,” Appl. Opt. 52(15), 3624–3636 (2013).
    [Crossref] [PubMed]

2015 (2)

C. Wang, Z. Wang, and Q. Xu, “Unicursal random maze tool path for computer-controlled optical surfacing,” Appl. Opt. 54(34), 10128–10136 (2015).
[Crossref] [PubMed]

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

2014 (1)

2013 (1)

2011 (2)

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
[Crossref]

2010 (1)

H. Y. Tam and H. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210(5), 807–818 (2010).
[Crossref]

2009 (1)

X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” J. Mater. Process. Technol. 209(7), 3665–3673 (2009).
[Crossref]

2008 (2)

2004 (1)

V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
[Crossref]

1977 (1)

Adamatzky, A.

A. Adamatzky, “Growing spanning trees in plasmodium machines,” Kybernetes 37(2), 258–264 (2008).
[Crossref]

Beaucamp, A.

Cao, C.

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Charlton, P.

Cheng, H.

H. Y. Tam, H. Cheng, and Z. Dong, “Peano-like paths for subaperture polishing of optical aspherical surfaces,” Appl. Opt. 52(15), 3624–3636 (2013).
[Crossref] [PubMed]

H. Y. Tam and H. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210(5), 807–818 (2010).
[Crossref]

Cheung, C. F.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Dong, Z.

Duc, E.

V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
[Crossref]

Dunn, C. R.

Ho, L. T.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Jones, R. A.

Kong, L. B.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Namba, Y.

Pan, R.

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Pateloup, V.

V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
[Crossref]

Peng, Y.

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Pessoles, X.

X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” J. Mater. Process. Technol. 209(7), 3665–3673 (2009).
[Crossref]

Ray, P.

V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
[Crossref]

Sun, M.

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Tam, H. Y.

H. Y. Tam, H. Cheng, and Z. Dong, “Peano-like paths for subaperture polishing of optical aspherical surfaces,” Appl. Opt. 52(15), 3624–3636 (2013).
[Crossref] [PubMed]

H. Y. Tam and H. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210(5), 807–818 (2010).
[Crossref]

To, S.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Tournier, C.

X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” J. Mater. Process. Technol. 209(7), 3665–3673 (2009).
[Crossref]

Walker, D. D.

Wang, C.

Wang, Z.

C. Wang, Z. Wang, and Q. Xu, “Unicursal random maze tool path for computer-controlled optical surfacing,” Appl. Opt. 54(34), 10128–10136 (2015).
[Crossref] [PubMed]

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Xu, Q.

Yu, X. B.

F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
[Crossref]

Zhang, F. H.

F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
[Crossref]

Zhang, Y.

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
[Crossref]

Adv. Mat. Res. (1)

F. H. Zhang, X. B. Yu, and Y. Zhang, “Study on unicursal pseudo-random tool path for computer controlled polishing,” Adv. Mat. Res. 188, 729–732 (2011).
[Crossref]

Appl. Opt. (4)

Int. J. Adv. Manuf. Technol. (1)

R. Pan, Y. Zhang, C. Cao, M. Sun, Z. Wang, and Y. Peng, “Modeling of material removal in dynamic deterministic polishing,” Int. J. Adv. Manuf. Technol. 81(9-12), 1631–1642 (2015).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

V. Pateloup, E. Duc, and P. Ray, “Corner optimization for pocket machining,” Int. J. Mach. Tools Manuf. 44(12–13), 1343–1353 (2004).
[Crossref]

J. Mater. Process. Technol. (2)

H. Y. Tam and H. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210(5), 807–818 (2010).
[Crossref]

X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” J. Mater. Process. Technol. 209(7), 3665–3673 (2009).
[Crossref]

Kybernetes (1)

A. Adamatzky, “Growing spanning trees in plasmodium machines,” Kybernetes 37(2), 258–264 (2008).
[Crossref]

Opt. Express (1)

Precis. Eng. (1)

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1 Growth of a neuroblast (Pn indicate the position of attractants) [8].
Fig. 2
Fig. 2 Circular random path creation procedure.
Fig. 3
Fig. 3 Shapes of tool paths.
Fig. 4
Fig. 4 Velocity variation in random paths at command feed rate 1000 mm/min.
Fig. 5
Fig. 5 Model of influence function.
Fig. 6
Fig. 6 Surface waviness on simulated surfaces without velocity change.
Fig. 7
Fig. 7 1D FFT analysis of surface waviness without velocity change.
Fig. 8
Fig. 8 2D FFT analysis of surface waviness without velocity change.
Fig. 9
Fig. 9 Surface waviness on simulated surfaces including velocity change.
Fig. 10
Fig. 10 1D FFT analysis of surface waviness including velocity change.
Fig. 11
Fig. 11 Setup of polishing machine and photomask blank.
Fig. 12
Fig. 12 Surface waviness on polished surfaces at slow feed.
Fig. 13
Fig. 13 Surface waviness of circular random path with 7 μm backlash in X-axis.
Fig. 14
Fig. 14 1D FFT analysis of surface waviness at slow feed polishing.
Fig. 15
Fig. 15 2D FFT analysis of surface waviness at slow feed polishing.
Fig. 16
Fig. 16 Surface waviness on polished surfaces at fast feed.
Fig. 17
Fig. 17 Influence of tool run-out on removal depth.
Fig. 18
Fig. 18 Comparison of 3σ of normalized surface waviness for different filterings.
Fig. 19
Fig. 19 Comparison of edge profile.
Fig. 20
Fig. 20 1D FFT analysis of surface waviness at fast feed polishing.
Fig. 21
Fig. 21 2D FFT analysis of surface waviness at fast feed polishing.
Fig. 22
Fig. 22 Peak amplitude comparison on X and Y-axis.

Tables (7)

Tables Icon

Table 1 Parameters of tool paths.

Tables Icon

Table 2 Specification of polishing machine.

Tables Icon

Table 3 Servo parameters of polishing machine.

Tables Icon

Table 4 Command feed rate and number of polishing runs.

Tables Icon

Table 5 Parameters of polishing runs.

Tables Icon

Table 6 Experimental equipment.

Tables Icon

Table 7 Comparison of surface roughness and peak amplitude.

Metrics