Abstract

We demonstrated two liquid crystal diffractive waveplates: one optimized for near-infrared (1.06 µm), and another for mid-wave infrared (MWIR, 3~5 µm). By employing a low loss liquid crystal mixture UCF-M3, whose absorption loss is below 2% in the 4~5 µm spectral region, the grating achieves over 98% diffraction efficiency in a broad MWIR range. To switch the grating, both active and passive driving methods can be considered. In our experiment, we used a polymer-stabilized twisted nematic cell as the polarization rotator for passive driving. The obtained rise time is 0.2 ms and decay time is 10 ms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response polymer network liquid crystals for mid-infrared applications

Fangwang Gou, Ran Chen, Minggang Hu, Juanli Li, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Express 26(23) 29735-29743 (2018)

Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

Fast-response infrared phase modulator based on polymer network liquid crystal

Fenglin Peng, Haiwei Chen, Suvagata Tripathi, Robert J. Twieg, and Shin-Tson Wu
Opt. Mater. Express 5(2) 265-273 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  2. B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
    [Crossref]
  3. J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
    [Crossref]
  4. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [Crossref]
  5. B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
    [Crossref]
  6. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  7. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [Crossref] [PubMed]
  8. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
    [Crossref] [PubMed]
  9. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  10. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  11. E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
    [Crossref]
  12. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
    [Crossref]
  13. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
    [Crossref]
  14. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
    [Crossref]
  15. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).
  16. H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
    [Crossref]
  17. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
    [Crossref]
  18. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  19. F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
    [Crossref]
  20. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  21. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [Crossref] [PubMed]
  22. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤ 90°,” J. Phys. D. 8(13), 1575–1584 (1975).
    [Crossref]
  23. J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 183–192 (2014).
    [Crossref]
  24. L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
    [Crossref]
  25. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]

2017 (1)

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (2)

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

2012 (2)

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

2011 (1)

2010 (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

2009 (3)

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

2007 (1)

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

2006 (3)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

2004 (2)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[Crossref] [PubMed]

2003 (1)

B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

2000 (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[Crossref]

1996 (1)

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤ 90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

An, Z.

Bagavathiappan, S.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Bos, P. J.

B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[Crossref]

Chen, H.

Chen, Y.

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Dabrowski, R.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Dorschner, T. A.

Du, F.

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Duncan, B. D.

B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Escuti, M. J.

Friedman, L. J.

Gauza, S.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Glebov, L. B.

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤ 90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

Grüner, G.

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Hecht, D. S.

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hobbs, D. S.

Hu, L.

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Hu, M.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Jayakumar, T.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Kahn, J. M.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[Crossref]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Kim, J.

Kimball, B.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

Kimball, B. R.

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Lahiri, B. B.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Li, J.

Lin, C. L.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Lin, Y. H.

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Lu, Y. Q.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Oh, C.

Ouskova, E.

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Peng, F.

Philip, J.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Piecek, W.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Resler, D. P.

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Roberts, D.

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

Rotar, V.

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Sarkissian, H.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Serak, S. V.

Serati, S.

Sergan, V.

B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Sharp, R. C.

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Steeves, D. M.

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

Sun, J.

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Tabiryan, N.

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

Tabiryan, N. V.

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤ 90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

Tripathi, S.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Twieg, R. J.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Weng, Y.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Wu, S. T.

Wu, S.-T.

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Xianyu, H.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Xu, D.

Zeldovich, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Zeldovich, B. Y.

Zhu, X.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

IEEE Trans. Commun. (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[Crossref]

Infrared Phys. Technol. (1)

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

J. Disp. Technol. (1)

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

J. Phys. D. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤ 90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

J. Polym. Sci., Part B, Polym. Phys. (1)

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Liq. Cryst. (2)

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Nat. Photonics (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Opt. Eng. (1)

B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

Proc. SPIE (1)

E. Ouskova, D. Roberts, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Diffractive waveplates for long wave infrared,” Proc. SPIE 10194, 1019404 (2017).
[Crossref]

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic structure of the cycloidal diffractive waveplate. Λ is the grating pitch length. Through the grating, the incident right-handed circular polarized (RCP) light is converted to + 1st order left-handed circular polarized (LCP) output.
Fig. 2
Fig. 2 (a) The image of a cycloidal diffractive waveplate under polarizing optical microscope. (b) Diffraction angle as a function of wavelength: Dots are measured data and line is calculated from Eq. (2).
Fig. 3
Fig. 3 Wavelength dependent diffraction efficiency with d = 2.07 µm. Dots are measured data and line is calculated result using Eq. (3).
Fig. 4
Fig. 4 Measured rise and decay time with (a) active and (b) passive driving. The inset figures show driving schemes. For active driving, the applied voltage is 10 Vrms. For passive driving, a PSTN cell is used as the polarization rotator, and the applied voltage is 80 Vrms. λ = 1.06 µm.
Fig. 5
Fig. 5 PPLN OPO setup. M1, M2: OPO dichroic mirrors; DM1: dichroic mirror for pump and signal rejection; LP: 3-µm long pass filter.
Fig. 6
Fig. 6 (a) Measured transmittance spectrum of UCF-M3 in the MWIR region with cell gap d = 9 μm. (b) Wavelength dependent diffraction efficiency. d = 8.51µm. Dots are measured data and line is calculated result using Eq. (3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n (x)=[ cos(qx),sin(qx) ],q=2π/Λ.
θ= sin 1 (2λ/Λ),
η(λ)= sin 2 ( πdΔn λ ).

Metrics