Abstract

We present direct observation of filamentary plasma grating induced by interference between two noncollinear infrared femtosecond pulses in water by doping with gold nanoparticles. The gold nanoparticles act as scattering media in water and visualize the fine structure of local optical fields of plasma grating. By measuring the variation of local conductivity as laser undergoes filamentation in water, the generated electron density in water is qualitatively studied. Significant enhancement of local electron density is observed at the intersecting region as two laser beams form plasma grating, indicating the breakthrough of clamped intensity of a conventional filament in water.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser filamentation induced bubbles and their motion in water

Fengjiang Liu, Shuai Yuan, Zhong Zuo, Wenxue Li, Liang’en Ding, and Heping Zeng
Opt. Express 24(12) 13258-13263 (2016)

Probing the effective length of plasma inside a filament

Yaoxiang Liu, Tiejun Wang, Na Chen, Shengzhe Du, Jingjing Ju, Haiyi Sun, Cheng Wang, Jiansheng Liu, Haihe Lu, See Leang Chin, Ruxin Li, Zhizhan Xu, and Zhanshan Wang
Opt. Express 25(10) 11078-11087 (2017)

Terahertz modulation induced by filament interaction

Boqu He, Junyi Nan, Min Li, Shuai Yuan, and Heping Zeng
Opt. Lett. 42(5) 967-970 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
    [Crossref]
  2. L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
    [Crossref]
  3. L. Radziemski and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012,” Spectrochim. Acta B At. Spectrosc. 87, 3–10 (2013).
    [Crossref]
  4. K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
    [Crossref] [PubMed]
  5. L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
    [Crossref] [PubMed]
  6. A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  7. X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
    [Crossref]
  8. Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
    [Crossref]
  9. Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
    [Crossref] [PubMed]
  10. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
    [Crossref] [PubMed]
  11. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
    [Crossref]
  12. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234(1-6), 399–406 (2004).
    [Crossref]
  13. K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
    [Crossref]
  14. A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
    [Crossref]
  15. C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
    [Crossref]
  16. O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
    [Crossref] [PubMed]
  17. Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
    [Crossref]
  18. G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
    [Crossref] [PubMed]
  19. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
    [Crossref]
  20. S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  21. C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
    [Crossref]
  22. V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
    [Crossref] [PubMed]
  23. A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, “Self-guided propagation of femtosecond light pulses in water,” Opt. Lett. 28(14), 1269–1271 (2003).
    [Crossref] [PubMed]
  24. A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
    [Crossref]
  25. S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
    [Crossref]
  26. R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
    [Crossref]
  27. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
    [Crossref] [PubMed]
  28. R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
    [Crossref]
  29. F. Liu, S. Yuan, Z. Zuo, W. Li, L. Ding, and H. Zeng, “Laser filamentation induced bubbles and their motion in water,” Opt. Express 24(12), 13258–13263 (2016).
    [Crossref] [PubMed]
  30. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
    [Crossref] [PubMed]
  31. S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
    [Crossref] [PubMed]
  32. S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
    [Crossref]
  33. O. Koppius, “A Comparison of the Thermionic and Photo-Electric Work Function for Platinum,” Phys. Rev. 18(6), 443–455 (1921).
    [Crossref]
  34. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
    [Crossref] [PubMed]
  35. L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
    [Crossref]
  36. S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett. 34(19), 3020–3022 (2009).
    [Crossref] [PubMed]
  37. H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express 12(20), 4768–4774 (2004).
    [Crossref] [PubMed]
  38. J. Liu, H. Schroeder, S. L. Chin, R. Li, and Z. Xu, “Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation,” Opt. Express 13(25), 10248–10259 (2005).
    [Crossref] [PubMed]
  39. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
    [Crossref] [PubMed]
  40. P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
    [Crossref]
  41. G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
    [Crossref] [PubMed]
  42. V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
    [Crossref] [PubMed]

2016 (2)

F. Liu, S. Yuan, Z. Zuo, W. Li, L. Ding, and H. Zeng, “Laser filamentation induced bubbles and their motion in water,” Opt. Express 24(12), 13258–13263 (2016).
[Crossref] [PubMed]

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

2014 (4)

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

2013 (4)

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

L. Radziemski and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012,” Spectrochim. Acta B At. Spectrosc. 87, 3–10 (2013).
[Crossref]

2012 (2)

Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
[Crossref] [PubMed]

L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
[Crossref]

2011 (4)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

2010 (6)

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

2009 (4)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett. 34(19), 3020–3022 (2009).
[Crossref] [PubMed]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

2008 (2)

2007 (3)

S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
[Crossref] [PubMed]

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2005 (1)

2004 (2)

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234(1-6), 399–406 (2004).
[Crossref]

H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express 12(20), 4768–4774 (2004).
[Crossref] [PubMed]

2003 (2)

A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, “Self-guided propagation of femtosecond light pulses in water,” Opt. Lett. 28(14), 1269–1271 (2003).
[Crossref] [PubMed]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

2001 (1)

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

1999 (1)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1998 (1)

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

1996 (1)

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
[Crossref]

1921 (1)

O. Koppius, “A Comparison of the Thermionic and Photo-Electric Work Function for Platinum,” Phys. Rev. 18(6), 443–455 (1921).
[Crossref]

Abdellatif, G.

L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
[Crossref]

Abdollahpour, D.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
[Crossref] [PubMed]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Akturk, S.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

Amendola, V.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

André, Y. B.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

Arnold, C. L.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

Bagchi, S.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

Baghdassarian, O.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Becker, A.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Binhammer, T.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Boulais, E.

R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

Bourbeau, E.

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

Brelet, Y.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Brodeur, A.

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
[Crossref]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Cao, W.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Carbonnel, J.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Chen, S.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Cheng, Y.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Chin, S.

Chin, S. L.

J. Liu, H. Schroeder, S. L. Chin, R. Li, and Z. Xu, “Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation,” Opt. Express 13(25), 10248–10259 (2005).
[Crossref] [PubMed]

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234(1-6), 399–406 (2004).
[Crossref]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
[Crossref]

Chu, H. C.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Cocke, C. L.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Cook, K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Couairon, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett. 34(19), 3020–3022 (2009).
[Crossref] [PubMed]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
[Crossref] [PubMed]

Couairona, A.

A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Cremers, D.

L. Radziemski and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012,” Spectrochim. Acta B At. Spectrosc. 87, 3–10 (2013).
[Crossref]

De, S.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Di Trapani, P.

Ding, B.

Ding, L.

F. Liu, S. Yuan, Z. Zuo, W. Li, L. Ding, and H. Zeng, “Laser filamentation induced bubbles and their motion in water,” Opt. Express 24(12), 13258–13263 (2016).
[Crossref] [PubMed]

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

Ding, P.

Diomin, I.

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Dubietis, A.

Durand, M.

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Eisenmann, S.

S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Fattaccioli, D.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

Forestier, B.

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Franco, M.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

Fu, Y. X.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Gaabour, L. H.

L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
[Crossref]

Gaarde, M. B.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Gamal, Y. E. E. D.

L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
[Crossref]

Gopal, A.

Guillermin, R.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

Hafner, J. H.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

He, F.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Houard, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Hu, B.

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Ilkov, F. A.

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
[Crossref]

Jarnac, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Jukna, V.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Kapteyn, H. C.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Kar, A. K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Kiran, P. P.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

Koppius, O.

O. Koppius, “A Comparison of the Thermionic and Photo-Electric Work Function for Platinum,” Phys. Rev. 18(6), 443–455 (1921).
[Crossref]

Kovacev, M.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Krishnan, S. R.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

Kumar, G. R.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

Kumar, V. R.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Lachaine, R.

R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

Lamb, R. A.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Lapotko, D. O.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Lauterborn, W.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Leela, C.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Li, R.

Li, W.

F. Liu, S. Yuan, Z. Zuo, W. Li, L. Ding, and H. Zeng, “Laser filamentation induced bubbles and their motion in water,” Opt. Express 24(12), 13258–13263 (2016).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Li, W. X.

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

Lindau, O.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Litvinyuk, I. V.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Liu, F.

Liu, J.

Liu, Q.

Liu, X.

Liu, Y.

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Liu, Z.

Lu, X.

Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Majus, D.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Meneghetti, M.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

Meunier, M.

R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

Milián, C.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Minardi, S.

Mizushima, Y.

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Morgner, U.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Murnane, M. M.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Mysyrowicz, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Ohl, C. D.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Papazoglou, D. G.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
[Crossref] [PubMed]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Piskarskas, R.

Point, G.

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

Prade, B.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Prashant, T. S.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Pukhov, A.

S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
[Crossref] [PubMed]

Quidant, R.

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

Radhakrishnan, P.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Radziemski, L.

L. Radziemski and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012,” Spectrochim. Acta B At. Spectrosc. 87, 3–10 (2013).
[Crossref]

Ranitovic, P.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Rao, S. V.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Ray, D.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Saito, T.

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Schroeder, H.

Schulz, E.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Sessarego, J. P.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

Shi, L.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Shi, L. P.

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

Shi, Y.

Singh, K. P.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Sreeja, S.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Steingrube, D. S.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Sun, S.

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
[Crossref] [PubMed]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

Tabbert, B.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Tamoašuskas, G.

Tamosauskas, G.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

Tamošauskas, G.

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Tatarakis, M.

Tewari, S. P.

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

Thumm, U.

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

Tong, Y.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

Tzortzakis, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments,” Opt. Express 19(18), 16866–16871 (2011).
[Crossref] [PubMed]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

Varanavicius, A.

Wang, C.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Wang, D.

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

Wang, Y.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Williams, G. A.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Wu, J.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

Xu, Z.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

J. Liu, H. Schroeder, S. L. Chin, R. Li, and Z. Xu, “Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation,” Opt. Express 13(25), 10248–10259 (2005).
[Crossref] [PubMed]

Xu, Z. Z.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Yang, X.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

Yuan, S.

Zeng, H.

F. Liu, S. Yuan, Z. Zuo, W. Li, L. Ding, and H. Zeng, “Laser filamentation induced bubbles and their motion in water,” Opt. Express 24(12), 13258–13263 (2016).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

Zeng, H. P.

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

Zhou, B.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

Zhou, H.

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

Zhou, Z. H.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Zigler, A.

S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
[Crossref] [PubMed]

Zuo, Z.

ACS Nano (1)

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

R. Lachaine, E. Boulais, and M. Meunier, “From thermo-to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

Appl. Phys. Lett. (5)

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[Crossref]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[Crossref]

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 119–122 (2013).
[Crossref]

Chem. Soc. Rev. (1)

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

J. Mod. Phys. (1)

L. H. Gaabour, Y. E. E. D. Gamal, and G. Abdellatif, “Numerical investigation of the plasma formation in distilled water by Nd-YAG laser pulses of different duration,” J. Mod. Phys. 3(10), 1683–1691 (2012).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Laser Phys. (1)

S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23(10), 106002 (2013).
[Crossref]

New J. Phys. (1)

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(5), 043022 (2011).
[Crossref]

Opt. Commun. (4)

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[Crossref]

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234(1-6), 399–406 (2004).
[Crossref]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3-4), 193–198 (1996).
[Crossref]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282(1), 129–134 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref] [PubMed]

Phys. Rep. (1)

A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. (1)

O. Koppius, “A Comparison of the Thermionic and Photo-Electric Work Function for Platinum,” Phys. Rev. 18(6), 443–455 (1921).
[Crossref]

Phys. Rev. A (3)

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89(3), 033809 (2014).
[Crossref]

L. P. Shi, W. X. Li, H. Zhou, D. Wang, L. Ding, and H. P. Zeng, “Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon,” Phys. Rev. A 88(5), 053825 (2013).
[Crossref]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 93(6), 063106 (2016).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in Air,” Phys. Rev. Lett. 112(22), 223902 (2014).
[Crossref] [PubMed]

K. P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M. M. Murnane, H. C. Kapteyn, I. V. Litvinyuk, and C. L. Cocke, “Control of electron localization in deuterium molecular ions using an attosecond pulse train and a many-cycle infrared pulse,” Phys. Rev. Lett. 104(2), 023001 (2010).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy Exchange between Femtosecond Laser Filaments in Air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

S. Eisenmann, A. Pukhov, and A. Zigler, “Fine structure of a laser-plasma filament in air,” Phys. Rev. Lett. 98(15), 155002 (2007).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

L. Radziemski and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012,” Spectrochim. Acta B At. Spectrosc. 87, 3–10 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Conical emissions and plasma grating in water doped with gold nanoparticles. (a) Top view of the two noncollinear filaments in water doped with gold nanoparticles. Their crossing region is marked by the dotted ellipse. The region between two vertical dotted lines corresponds to the measuring range in Fig. 4(b). (b) Light spot of conical emissions of the two beams projected on a white paper screen placed 0.32 m after the rear wall of the cuvette. (c) Close view of the ellipse region in (a), which was taken by the CCD attached to the microscope.
Fig. 2
Fig. 2 (a) Experimental apparatus for measuring the spatiotemporally averaged electron density of plasma grating in water doped with gold nanoparticles. (b) The oscilloscope signals at the intersecting region for plasma grating with the total pulse energy of two beams being 1 mJ in gold nanoparticles solution (red) and pure water (cyan), and for a single beam to generate filaments in gold nanoparticles solution with pulse energy being 1 mJ (blue) and 0.5 mJ (black).
Fig. 3
Fig. 3 Fringe contrast of plasma grating with different input laser energy in water doped with 100 μl of the as-produced gold nanoparticles solution. From left to right, the input laser energy of two beams is 0.1, 0.3, 0.5, 0.7 and 0.9 mJ, respectively.
Fig. 4
Fig. 4 (a) The brightness of the most glaring fringe in the plasma grating (blue triangles) and the maximum voltage change over the resistance (red dots) versus the input pulse energy of two beams. The scattering brightness takes the specific value of the peak in corresponding fringe contrast image in Fig. (3). (b) The maximum voltage changes over the resistance at different positions of the filament channels that are generated by single laser beam of 1 mJ (red triangles) and 0.5 mJ (black dots) in solution. The red arrow represents the laser propagation direction and the vertical dash line refers the crossing point in the case of plasma grating.

Metrics