Abstract

Universal phase-only spatial light modulators (UP-SLMs) are proposed and demonstrated by simulation and experiment. UP-SLMs, which consist of unitarily coupled electrically controllable wave plates, convert the optically anisotropic properties of the paired two wave plates into an effective single isotropic phase plate and can be realized with electrically tunable birefringence materials such as uniaxial liquid crystals (LCs). The universal approaches are applicable to any uniaxial anisotropic materials based cells, any LC cell operation modes and any incident light polarization states. Further the UP-SLMs are experimentally demonstrated even with commercial LCD panels having low geometrical rotational symmetry. These UP-SLMs will play significant roles in wave optics, communications, information displays, digital holography, quantum optics and quantum information technology by harnessing their unique capacity of modulating the only phase of linearly, circularly, elliptically, azimuthally, radially and even randomly polarized light.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation

Emil Hällstig, Torleif Martin, Lars Sjöqvist, and Mikael Lindgren
J. Opt. Soc. Am. A 22(1) 177-184 (2005)

Calibration of a phase-only spatial light modulator for both phase and retardance modulation

Yuanyuan Dai, Jacopo Antonello, and Martin J. Booth
Opt. Express 27(13) 17912-17926 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
    [Crossref]
  2. W. P. Bleha and L. A. Lei, “Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology,” Proc. SPIE 8736, 87360A (2013).
    [Crossref]
  3. K. Sarma, “Recent developments in stereoscopic and holographic 3D display technologies,” Proc. SPIE 9086, 908606 (2014).
  4. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
    [Crossref] [PubMed]
  5. T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).
    [Crossref] [PubMed]
  6. M. A. Karim and A. A. S. Awwal, “Electrooptic displays for optical information processing,” Proc. IEEE 84(6), 814–827 (1996).
    [Crossref]
  7. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [Crossref]
  9. D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref] [PubMed]
  10. R. Eriksen, V. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
    [Crossref] [PubMed]
  11. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  12. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  13. H. Jeong and J. Choi, “Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications,” Opt. Express 22(19), 22865–22881 (2014).
    [Crossref] [PubMed]
  14. H. Jeong and J. Choi, “Scalable micromesh-digital spatial light modulators,” Opt. Express 23(20), 26696–26709 (2015).
    [Crossref] [PubMed]
  15. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
    [Crossref]
  16. L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
    [Crossref] [PubMed]
  17. E. H. Waller and G. von Freymann, “Independent spatial intensity, phase and polarization distributions,” Opt. Express 21(23), 28167–28174 (2013).
    [Crossref] [PubMed]
  18. H. Kim, C.-Y. Hwang, K.-S. Kim, J. Roh, W. Moon, S. Kim, B.-R. Lee, S. Oh, and J. Hahn, “Anamorphic optical transformation of an amplitude spatial light modulator to a complex spatial light modulator with square pixels [invited],” Appl. Opt. 53(27), G139–G146 (2014).
    [Crossref] [PubMed]
  19. A. Shibukawa, A. Okamoto, Y. Goto, S. Honma, and A. Tomita, “Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators,” Opt. Express 22(10), 11918–11929 (2014).
    [Crossref] [PubMed]
  20. V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
    [Crossref] [PubMed]
  21. B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
    [Crossref]
  22. T. L. Kelly and J. Munch, “Phase-aberration correction with dual liquid-crystal spatial light modulators,” Appl. Opt. 37(22), 5184–5189 (1998).
    [Crossref] [PubMed]
  23. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35(23), 4567–4576 (1996).
    [Crossref] [PubMed]
  24. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
    [Crossref] [PubMed]
  25. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  26. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403–6409 (2004).
    [Crossref] [PubMed]
  27. W. Harm, A. Jesacher, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “How to use a phase-only spatial light modulator as a color display,” Opt. Lett. 40(4), 581–584 (2015).
    [Crossref] [PubMed]
  28. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940 (2007).
    [Crossref]
  29. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34(1), 34–36 (2009).
    [Crossref] [PubMed]
  30. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51(14), 2633–2637 (2012).
    [Crossref] [PubMed]
  31. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
    [Crossref]
  32. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  33. H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
    [Crossref] [PubMed]
  34. Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
    [Crossref] [PubMed]
  35. J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
    [Crossref]
  36. G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).
  37. J. A. Davis, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37(11), 3048 (1998).
    [Crossref]
  38. L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt. 34(11), 1944–1950 (1995).
    [Crossref] [PubMed]
  39. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18(18), 1567 (1993).
    [Crossref] [PubMed]
  40. H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  41. H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
    [Crossref]
  42. Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
    [Crossref] [PubMed]
  43. H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
    [Crossref]
  44. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 4.
  45. C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
    [Crossref]

2015 (7)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).
[Crossref] [PubMed]

H. Jeong and J. Choi, “Scalable micromesh-digital spatial light modulators,” Opt. Express 23(20), 26696–26709 (2015).
[Crossref] [PubMed]

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref] [PubMed]

W. Harm, A. Jesacher, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “How to use a phase-only spatial light modulator as a color display,” Opt. Lett. 40(4), 581–584 (2015).
[Crossref] [PubMed]

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

2014 (9)

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

H. Kim, C.-Y. Hwang, K.-S. Kim, J. Roh, W. Moon, S. Kim, B.-R. Lee, S. Oh, and J. Hahn, “Anamorphic optical transformation of an amplitude spatial light modulator to a complex spatial light modulator with square pixels [invited],” Appl. Opt. 53(27), G139–G146 (2014).
[Crossref] [PubMed]

A. Shibukawa, A. Okamoto, Y. Goto, S. Honma, and A. Tomita, “Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators,” Opt. Express 22(10), 11918–11929 (2014).
[Crossref] [PubMed]

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

H. Jeong and J. Choi, “Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications,” Opt. Express 22(19), 22865–22881 (2014).
[Crossref] [PubMed]

K. Sarma, “Recent developments in stereoscopic and holographic 3D display technologies,” Proc. SPIE 9086, 908606 (2014).

2013 (5)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

W. P. Bleha and L. A. Lei, “Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology,” Proc. SPIE 8736, 87360A (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

E. H. Waller and G. von Freymann, “Independent spatial intensity, phase and polarization distributions,” Opt. Express 21(23), 28167–28174 (2013).
[Crossref] [PubMed]

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (1)

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

2009 (2)

2007 (1)

2006 (2)

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

2005 (4)

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

R. Eriksen, V. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[Crossref] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1998 (2)

T. L. Kelly and J. Munch, “Phase-aberration correction with dual liquid-crystal spatial light modulators,” Appl. Opt. 37(22), 5184–5189 (1998).
[Crossref] [PubMed]

J. A. Davis, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37(11), 3048 (1998).
[Crossref]

1996 (2)

1995 (1)

1993 (1)

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ando, T.

Arrizón, V.

Awatsuji, Y.

Awwal, A. A. S.

M. A. Karim and A. A. S. Awwal, “Electrooptic displays for optical information processing,” Proc. IEEE 84(6), 814–827 (1996).
[Crossref]

Barabas, J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Barrera, J. F.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Bernet, S.

Bertolotti, J.

Bleha, W. P.

W. P. Bleha and L. A. Lei, “Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology,” Proc. SPIE 8736, 87360A (2013).
[Crossref]

Bolognini, N.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Bove, V. M.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Boyd, R. W.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brady, D. J.

Cao, Z.

Chipman, R. A.

Choi, J.

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Cui, K.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Daria, V.

Davis, J. A.

J. A. Davis, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37(11), 3048 (1998).
[Crossref]

De Almeida, J. O.

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Eriksen, R.

Fan, S. H.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Fang, J.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, X.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Frabboni, S.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Frumker, E.

Fukuchi, N.

Fütterer, G.

Gazzadi, G. C.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Ge, Z.

Glückstad, J.

Goorden, S. A.

Goto, Y.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Grillo, V.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Hahn, J.

Han, S.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Harm, W.

Harris, J.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Häussler, R.

Henao, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Honma, S.

Hor-Meyll, M.

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Hsu, K. C.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Hu, L.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, Y.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Hwang, C.-Y.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Inoue, T.

Jeong, H.

Jesacher, A.

Jolly, S.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Kanbayashi, Y.

Kang, M.

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

Karim, M. A.

M. A. Karim and A. A. S. Awwal, “Electrooptic displays for optical information processing,” Proc. IEEE 84(6), 814–827 (1996).
[Crossref]

Karimi, E.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Kato, H.

Kelly, T. L.

Kim, H.

Kim, K.-S.

Kim, S.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lee, B.-R.

Lee, H. T.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Lei, L. A.

W. P. Bleha and L. A. Lei, “Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology,” Proc. SPIE 8736, 87360A (2013).
[Crossref]

Leister, N.

Lemos, G. B.

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Li, D.

Li, X.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Lin, M.

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

Lin, Y.-H.

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Liu, F.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Liu, Y.

Ma, B.

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

Mafakheri, E.

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Matoba, O.

Matsumoto, N.

Méndez, G.

Moon, W.

Mosk, A. P.

Mu, Q.

Munch, J.

Neto, L. G.

Nitta, K.

Oh, S.

Ohtake, Y.

Okamoto, A.

Peng, C. C.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Peng, F.

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

Petrov, V.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Pezzaniti, J. L.

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Reichelt, S.

Ren, H.

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ribeiro, P. H. S.

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Ritsch-Marte, M.

Roberge, D.

Roh, J.

Sánchez-de-La-Llave, D.

Sarma, K.

K. Sarma, “Recent developments in stereoscopic and holographic 3D display technologies,” Proc. SPIE 9086, 908606 (2014).

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Savage, N.

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Shen, Y.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Sheng, Y.

Shibukawa, A.

Silberberg, Y.

Smalley, D. E.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Smithwick, Q. Y. J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Tebaldi, M.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Thalhammer, G.

Tomita, A.

Torroba, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Tsai, T.-H.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Usukura, N.

von Freymann, G.

Walborn, S. P.

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Waller, E. H.

Wang, J.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref] [PubMed]

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, Y.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Wang, Z.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Wen, C. H.

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wu, J. J.

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

Wu, S.-T.

Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Wu, Y.-H.

Xu, X.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Xuan, L.

Yamamoto, K.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, H.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Yu, H.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Yuan, X.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, D.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Zhang, H.

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Zhao, P.

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhou, J.

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

Zhu, L.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

Displays (1)

C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee, and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31(4–5), 210–215 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (2)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Nat. Photonics (2)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
[Crossref]

Nat. Phys. (1)

J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11(8), 629–634 (2015).
[Crossref]

Nature (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Opt. Eng. (1)

J. A. Davis, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37(11), 3048 (1998).
[Crossref]

Opt. Express (10)

V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
[Crossref] [PubMed]

Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).
[Crossref] [PubMed]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403–6409 (2004).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

H. Jeong and J. Choi, “Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications,” Opt. Express 22(19), 22865–22881 (2014).
[Crossref] [PubMed]

R. Eriksen, V. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[Crossref] [PubMed]

A. Shibukawa, A. Okamoto, Y. Goto, S. Honma, and A. Tomita, “Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators,” Opt. Express 22(10), 11918–11929 (2014).
[Crossref] [PubMed]

H. Jeong and J. Choi, “Scalable micromesh-digital spatial light modulators,” Opt. Express 23(20), 26696–26709 (2015).
[Crossref] [PubMed]

E. H. Waller and G. von Freymann, “Independent spatial intensity, phase and polarization distributions,” Opt. Express 21(23), 28167–28174 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

G. B. Lemos, J. O. De Almeida, S. P. Walborn, P. H. S. Ribeiro, and M. Hor-Meyll, “Characterization of a spatial light modulator as a polarization quantum channel,” Phys. Rev. A 89, 1–8 (2014).

Proc. IEEE (1)

M. A. Karim and A. A. S. Awwal, “Electrooptic displays for optical information processing,” Proc. IEEE 84(6), 814–827 (1996).
[Crossref]

Proc. SPIE (3)

B. Ma, F. Peng, M. Kang, and J. Zhou, “Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators,” Proc. SPIE 9296, 929606 (2014).
[Crossref]

W. P. Bleha and L. A. Lei, “Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology,” Proc. SPIE 8736, 87360A (2013).
[Crossref]

K. Sarma, “Recent developments in stereoscopic and holographic 3D display technologies,” Proc. SPIE 9086, 908606 (2014).

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Sci. Rep. (4)

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref] [PubMed]

H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, “Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light,” Sci. Rep. 3(1), 3191 (2013).
[Crossref] [PubMed]

Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, and Y. Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices,” Sci. Rep. 5(1), 10958 (2015).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (1)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 4.

Supplementary Material (1)

NameDescription
» Visualization 1       A video of a UP-SLM with a random director distribution. Please see section 3.1, figure 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Light propagation along the z-axis through unitarily coupled wave plates located in the x-y plane with the optical slow axes (blue arrows) along ϕ and ϕ + π/2 in the azimuthal angles, respectively. Input ( J 1 ), intermediate ( J 2 ), and output ( J 3 ) light polarization states (green ellipses) are given by Jones vectors. (b) Conversion of the unitarily coupled anisotropic wave plates into an effective isotropic phase plate.
Fig. 2
Fig. 2 Schematically illustrating the working principle of UP-SLMs. (a) The stacking configuration of homogeneous LC layers, in which the LC layer position dependent director orientations are varied with z as a function of polar angle θ and azimuthal angle ϕ along the light propagation. With respect to the interface (or mid-plane) between the LC cells, there are unitarily coupled pairs (( φ n , φ n +π/2), ( Γ M n ( ϕ M n )= Γ A n ( ϕ A n ))) of LC layers at equal optical distance from the mid-plane while the polar angle difference can be zero or πθ. (b) Schematically showing the light propagation through two unitarily coupled wave plates (or LC cells) under biased electrical voltages of V1 and V2. For the same material and the same structure parameters, V1 = V2. The input polarization state is preserved but the phase is changed by δtotal.
Fig. 3
Fig. 3 (a) A UP-SLM structure consists of unitarily coupled wave plates with random director distributions in polar (θ) and azimuthal (ϕ) angles. Simulation of light propagation through the UP-SLM structure for (b) laterally (x), (c) vertically linearly (y), (d) left-handed circularly and (e) elliptically polarized incidence lights. The left columns are showing the polarization states along the z-direction. The red (blue) dots with number on the Poincaré spheres on the right columns indicate the light polarization state as the light goes through the first (second) cell of the UP-SLM structure. The single cell has 6000 nm in thickness. The output polarization states are given by the Jones vectors, J f x,y,LHC,Ellip = J i x,y,LHC,Ellip e iπ(58.1) (see Visualization 1).
Fig. 4
Fig. 4 Schematic birefringence (left) and director (right) distribution along the z direction of unitarily coupled LC cells with directors fixed in an azimuthal angle of ϕ0 (lower panel) and π/2 + ϕ0 (upper panel) formed by (a) two different cells with random stacking LC layer orders, (b) two equivalent LC cells just overlaid, and (c) two equivalent LC cells but relatively flipped-over.
Fig. 5
Fig. 5 (a) Overlaid two PA LC cells angled with 90° in azimuthal angle with respect to each other but the stacking order is random and is varied as shown in Fig. 4(a). Simulation of the UP-SLM structures for (b) x-polarization, (c) y-polarization, (d) left-handed circular polarization and (e) an elliptical polarization. The single cell thickness is 921.45 nm and the single cell is equally divided by 12 layers.
Fig. 6
Fig. 6 (a) The optical microscopic and (b) SEM image of the bottom plate with alignment layers with ± 45 azimuthal angles and the top plate (c and d) with color filters and a snow flake like cross pattern. (e) Schematic of the effective internal alignment structures.
Fig. 7
Fig. 7 The two UP-SLM structures based on the two commercial MVA LC cells with vertical shifting (a, b, c) and horizontal shifting (d, e, f). Schematic diagram describing based on (a,d) subpixel structures, (b, e) color pixel, and (c, f) real images.
Fig. 8
Fig. 8 (a) Schematic of a set-up to characterize the UP-SLM using a polarimeter. (b) Azimuthal angle, (c) ellipticity and (d) normalized power of the output light polarization states when the UP-SLM is repeatedly addressed as a function of time with varying gray level from 0 to 255 for various incident linear polarization states.
Fig. 9
Fig. 9 (a) Schematic of a set-up to take the optical images of the pixel response. UP-SLM subpixel images at the addressed grey level of 0 and 255 using a 532 nm green laser (b, c), and white incoherent light (d, e), respectively, when the UP-SLM is sandwiched between two 45° polarizers. (f) Green light beams passing through the blue sub-pixel. (g) Schematic for misalignment. (h) Interference by beams originated from the neighboring domains.
Fig. 10
Fig. 10 (a) Mach-Zehnder interferometer set-up for phase modulation measurement by addressing (b) the pattern on the UP-SLM. (c) CCD image of the interference pattern when the upper part on the UP-SLM is addressed with 225 grey level (white state) and the lower part is addressed with 0 grey level (black state).
Fig. 11
Fig. 11 Relative phase retardation depending on gray level for 532 nm wavelength, 0° (dark dots), 30° (red dots), 45° (green dots), 60° (yellow dots), 90° (blue dots), 120° (purple dots), 135° (cyan dots), 150° (gray dots) linear polarization lights. Also, simulation result based on commutable waveplate is shown by dark blue dots. The dark lines are for eye guide. For the better visualization, each curve is vertically shifted relatively by 40°. For eye guide, the experimentally obtained date are fitted with a 5th order polynomials.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

M( θ M , ϕ M , d M )=R( ϕ M )W( θ M , d M )R( ϕ M )=M( ϕ M , Γ M , φ M ) =( cos ϕ M sin ϕ M sin ϕ M cos ϕ M ) e i φ M ( e i Γ M /2 0 0 e +i Γ M /2 )( cos ϕ M sin ϕ M sin ϕ M cos ϕ M ) = e i φ M [ e i Γ M /2 cos 2 ϕ M + e i Γ M /2 sin 2 ϕ M ( e i Γ M /2 e i Γ M /2 )sin ϕ M cos ϕ M ( e i Γ M /2 e i Γ M /2 )sin ϕ M cos ϕ M e i Γ M /2 sin 2 ϕ M + e i Γ M /2 cos 2 ϕ M ],
A( ϕ A , Γ A , φ A )M( ϕ M , Γ M , φ M )= e iδ I,
M U + ( ϕ M , Γ M )= M U ( ϕ M ± 90 , Γ M )= M U 1 ( ϕ M , Γ M ).
A( ϕ A , Γ A , φ A )= e iδ I M 1 ( ϕ M , Γ M , φ M )= e iδ [ e i φ M M + ( ϕ M , Γ M , φ M ) ] =M( ϕ M ± 90 , Γ M ,δ φ M ).
k=n 1 A k ( ϕ k ± 90 , Γ k , φ A k ) k=1 n M k ( ϕ k , Γ k , φ M k ) = e i δ total ( 1 0 0 1 ).
J i x =( 1 0 ), J i y =( 0 1 ), J i LHC =( 1 i ) 1 2 , J i ellipitcal =( 4+2i 1+2i ) 1 5 .
θ( z,V )= θ 0 (V) for all z.
θ(z,V)={ 0 ifC(V)sin( π D z)>1, 90 sin 1 [C(V)sin( π D z)]ifC(V)sin( π D z)1.
θ(z,V)={ 90 zδθ(V)ifz D 2 and 90 zδθ(V)> 0 , 0 ifz D 2 and 90 zδθ(V) 0 , 90 (Dz)δθ(V)ifz> D 2 and 90 (Dz)δθ(V)> 0 , 0 ifz> D 2 and 90 (Dz)δθ(V) 0 .
M(ϕ, Γ 1 , φ 1 )M(ϕ, Γ 2 , φ 2 ) = e j( φ 1 + φ 2 ) ( cosϕ sinϕ sinϕ cosϕ )( e i( Γ 1 + Γ 2 )/2 0 0 e i( Γ 1 + Γ 2 )/2 )( cosϕ sinϕ sinϕ cosϕ ) =M(ϕ, Γ 1 + Γ 2 , φ 1 + φ 2 ) =M(ϕ, Γ 2 , φ 2 )M(ϕ, Γ 1 , φ 1 ).
M total (ϕ,Γ,φ)=( cosϕ sinϕ sinϕ cosϕ )( e i k 0 n e {θ(z)}d z 0 0 e i k 0 n o d z )( cosϕ sinϕ sinϕ cosϕ ).
M total (ϕ, Γ M , φ M ) A total (ϕ+ 90 , Γ A , φ A ) =( cosϕ sinϕ sinϕ cosϕ )( e i k 0 ( n e,M {θ(z)}d z M + n o,A d z A ) 0 0 e i k 0 ( n o,M d z M + n e,M {θ(z)}d z A ) )( cosϕ sinϕ sinϕ cosϕ ) = e j( φ M + φ A ) ( cosϕ sinϕ sinϕ cosϕ )( e i( Γ A Γ M )/2 0 0 e i( Γ M Γ A )/2 )( cosϕ sinϕ sinϕ cosϕ ).
n e (θ= 0 )= n 0 , n e (θ= 90 )= n e , n o,effective = n o .
δ max,2d =2 φ max,d = k 0 n o d+ k 0 n e ( θ max )d= k 0 n o d+ k 0 n e d, δ min,2d =2 φ min,d = k 0 n o d+ k 0 n e ( θ min )d= k 0 n o d+ k 0 n o d.
Δ δ max,total = k 0 ΔndN= k 0 ΔnD.
Δδ( φ 1 , φ 2 )=δ{ θ 1 (V), θ 2 (V)}δ( 0 , 0 ) = φ θ,1 + φ θ,2 ( φ 0 ,1 + φ 0 ,2 ) = 1 2 ( n e1 ( θ )+ n o1 ) k 0 d 1 + 1 2 ( n e2 ( θ )+ n o2 ) k 0 d 2 { n o1 k 0 d 1 + n o2 k 0 d 2 } = 1 2 ( n e1 ( θ ) n o1 ) k 0 d 1 + 1 2 ( n e2 ( θ ) n o2 ) k 0 d 2 = Γ 1 = Γ 2 .
Δ δ total = k=1 n Δ δ k ( φ M , φ A ) = k=1 n Γ k ( M k , A k ) .
Δ δ total (GL)=F( e i(kx+ ϕ GL ) )F( e i(kx+ ϕ Black ) ).

Metrics