Abstract

A new inter-block precoding-based channel estimation (CE) scheme is proposed and experimentally demonstrated in an optical OFDM system with a superimposed pilot (SP). The proposed inter-block precoding scheme targets on eliminating the statistical mean of the unknown data symbols, and thereby improves the performance of SP-aided CE. We investigate the impact that both the precoding matrix and SP have on the system performance, from which we obtain the optimum value of signal-to-pilot power ratio (SPR) as well as the block length. We show through simulations and experiments that the proposed CE scheme, in comparison with the conventional preamble based scheme, has the advantage of entailing a much smaller overhead size, while offering similar performance in terms of CE accuracy and bit-error ratio (BER) performances. Furthermore, the proposed precoding scheme has no limit to the design of SP, and thus is applicable for any periodic pilots.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications

Yang Hong, Jing Xu, and Lian-Kuan Chen
Opt. Express 25(11) 12908-12914 (2017)

Improving performance of channel equalization in RSOA-based WDM-PON by QR decomposition

Xiang Li, Wen-De Zhong, Arokiaswami Alphones, Changyuan Yu, and Zhaowen Xu
Opt. Express 23(21) 27299-27305 (2015)

Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration

Rong Hu, Qi Yang, Xiao Xiao, Tao Gui, Zhaohui Li, Ming Luo, Shaohua Yu, and Shanhong You
Opt. Express 21(22) 26513-26519 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
    [Crossref]
  2. H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).
  3. C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
    [Crossref]
  4. M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
    [Crossref]
  5. C. Zhu, A. V. Tran, F. Pittalà, F. N. Hauske, T. Anderson, and E. Skafidas, “Applying implicit training to polarization-division-multiplexed coherent optical systems,” Opt. Express 21(17), 20187–20196 (2013).
    [Crossref] [PubMed]
  6. S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun. 50(12), 2113–2123 (2002).
    [Crossref]
  7. C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
    [Crossref]
  8. N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
    [Crossref]
  9. K. Vasudevan and H. B. Mishra, “Design of superimposed training sequence for spatially correlated multiple-input–multiple-output channels under interference-limited environments,” IET Commun. 9(10), 1259–1268 (2015).
    [Crossref]
  10. G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
    [Crossref]
  11. I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
    [Crossref]
  12. S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory 45(2), 622–640 (1999).
    [Crossref]
  13. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [Crossref]
  14. J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008).
    [Crossref]
  15. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
    [Crossref] [PubMed]
  16. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
    [Crossref]
  17. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
    [Crossref]

2017 (1)

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

2015 (1)

K. Vasudevan and H. B. Mishra, “Design of superimposed training sequence for spatially correlated multiple-input–multiple-output channels under interference-limited environments,” IET Commun. 9(10), 1259–1268 (2015).
[Crossref]

2014 (1)

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

2013 (1)

2009 (2)

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

2008 (2)

2006 (2)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

2005 (2)

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
[Crossref] [PubMed]

2003 (1)

I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[Crossref]

2002 (1)

S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun. 50(12), 2113–2123 (2002).
[Crossref]

1999 (1)

S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory 45(2), 622–640 (1999).
[Crossref]

1997 (1)

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
[Crossref]

Alameda-Hernandez, E.

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

Anderson, T.

Armstrong, J.

B. Mishra, H.

K. Vasudevan and H. B. Mishra, “Design of superimposed training sequence for spatially correlated multiple-input–multiple-output channels under interference-limited environments,” IET Commun. 9(10), 1259–1268 (2015).
[Crossref]

Barhumi, I.

I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[Crossref]

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
[Crossref]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
[Crossref]

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Dai, X.

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

Deng, R.

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Dou, G.

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Gao, J.

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Ghogho, M.

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

Giannakis, G. B.

S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun. 50(12), 2113–2123 (2002).
[Crossref]

Grubor, J.

Guo, C.

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

Han, Y.

Hauske, F. N.

He, X.

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Huang, L.

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

Jitapunkul, S.

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

Langer, K. D.

Leus, G.

I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[Crossref]

Li, D.

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

Li, G.

Li, L.

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Liu, H.

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

Liu, K. J. R.

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

Lowery, A. J.

McLernon, D.

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

Moonen, M.

I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[Crossref]

Nguyen, H. H.

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

Ohno, S.

S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun. 50(12), 2113–2123 (2002).
[Crossref]

Pham, D. H.

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

Pirak, C.

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

Pittalà, F.

Randel, S.

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Schmidt, B. J. C.

Shamai, S.

S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory 45(2), 622–640 (1999).
[Crossref]

Skafidas, E.

Swami, A.

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

Tran, A. V.

Tran, N. N.

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

Tuan, H. D.

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

Vasudevan, K.

K. Vasudevan and H. B. Mishra, “Design of superimposed training sequence for spatially correlated multiple-input–multiple-output channels under interference-limited environments,” IET Commun. 9(10), 1259–1268 (2015).
[Crossref]

Verdú, S.

S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory 45(2), 622–640 (1999).
[Crossref]

Walewski, J. W.

Wang, Z. J.

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

Ye, S.

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

Zhang, H.

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

Zhu, C.

Electron. Lett. (1)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

EURASIP J. Wirel. Commun. Netw. (1)

H. Zhang, X. Dai, D. Li, and S. Ye, “Linearly time-varying channel estimation and symbol detection for OFDMA uplink using superimposed training,” EURASIP J. Wirel. Commun. Netw. 2009(1), 1–11 (2009).

IEEE Photonics Technol. Lett. (1)

C. Guo, H. Liu, L. Huang, and H. Zhang, “Experimental Demonstration of CO-OFDM Systems Using Super-imposed Pilot,” IEEE Photonics Technol. Lett. 26(15), 1573–1576 (2014).
[Crossref]

IEEE Signal Process. Lett. (1)

M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel Estimation and Symbol Detection for Block Transmission Using Data-Dependent Superimposed Training,” IEEE Signal Process. Lett. 12(3), 226–229 (2005).
[Crossref]

IEEE Trans. Commun. (3)

S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun. 50(12), 2113–2123 (2002).
[Crossref]

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43 (2/3/4), 773–775 (1995).
[Crossref]

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

IEEE Trans. Inf. Theory (1)

S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory 45(2), 622–640 (1999).
[Crossref]

IEEE Trans. Signal Process. (3)

I. Barhumi, G. Leus, and M. Moonen, “Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[Crossref]

C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems,” IEEE Trans. Signal Process. 54(12), 4706–4716 (2006).
[Crossref]

N. N. Tran, D. H. Pham, H. D. Tuan, and H. H. Nguyen, “Orthogonal affine precoding and decoding for channel estimation and source detection in MIMO frequency-selective fading channels,” IEEE Trans. Signal Process. 57(3), 1151–1162 (2009).
[Crossref]

IET Commun. (1)

K. Vasudevan and H. B. Mishra, “Design of superimposed training sequence for spatially correlated multiple-input–multiple-output channels under interference-limited environments,” IET Commun. 9(10), 1259–1268 (2015).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Trans Emerg. Tel Tech (1)

G. Dou, X. He, R. Deng, L. Li, and J. Gao, “Orthogonal superimposed training design for doubly selective channel estimation using basis expansion models,” Trans Emerg. Tel Tech 28(8), e3157 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Statistical mean of the OFDM signals before adding SP (M = 255).
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Simulated MSE performance as a function of (a) SPR; (b) number of OFDM blocks; (c) SNR.
Fig. 4
Fig. 4 Experimental results. (a) BER as a function of number of OFDM blocks (M), with a data rate of 33-Gb/s and a received optical power (ROP) of −6 dBm; (b) BER as a function of the SPR, with a data rate of 33-Gb/s, M = 255 and an ROP of −6 dBm; (c) BER as a function of the ROP for 30-Gb/s adaptively bit and power loaded OFDM signal after 83.2-km SSMF transmission, with SPR = 15 dB.

Tables (1)

Tables Icon

Table 1 Parameters Used for Experiments and Simulations

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S=[ s 1 , s 2 ,, s N ] M×N .
P m =[ p 1 , p 2 ,, p M ] M×M ,
P w =[ p 1 , p 2 ,, p M ] (M+1)×M ,
X=PS=[ x 1 , x 2 ,, x N ].
U= 1ϕ PS+C=[ u 1 , u 2 ,, u N ],
c l = ϕ exp( j2πl×(l+2)/P ),l=0,1,...,P1,
Y=HU+W= 1ϕ H( PS+C )+W=[ y 1 , y 2 ,, y N ],
E(Y)= 1 M+1 p 0 T Y 1×N .
E( y l )=[ 1/ ( 1/ M+1 ) ]( 1ϕ p 0 T h l ( p l S+ c l )+ p 0 T w l ), 1ϕ h l c l
S ^ = P T ( H H YC ).

Metrics