Abstract

A wavefront aberration analysis method for measuring spectacle lenses in real-view condition is proposed and verified using experimental apparatus based on the eye-rotation model. Two strategies—feedback positioning and posture adjustment of incident beams and Hartmann-Shack wavefront-aberration sensor calibration at each measurement subarea—are applied to improve measurement accuracy. By simulating the real-view condition, wavefront aberration and user power on the vertex sphere can be obtained. Comparison experiments demonstrate the validity and accuracy of the proposed method and experimental apparatus. Freeform progressive addition lenses are also measured and the results analyzed. The findings provide a possible approach for optimizing the design of spectacle lenses and evaluating their manufacturing and imaging quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions

Chuanqing Zhou, Weichao Wang, Kun Yang, Xinyu Chai, and Qiushi Ren
Appl. Opt. 47(34) 6434-6441 (2008)

Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology

Jing Yu, Fengzhou Fang, and Zhongjun Qiu
Appl. Opt. 54(5) 986-994 (2015)

Instrument for Measuring the Marginal Power of Spectacle Lenses*

Francis E. Washer
J. Opt. Soc. Am. 45(9) 719-726 (1955)

References

  • View by:
  • |
  • |
  • |

  1. J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
    [PubMed]
  2. W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
    [Crossref] [PubMed]
  3. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
    [Crossref] [PubMed]
  4. J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).
  5. F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
    [Crossref]
  6. W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
    [Crossref]
  7. J. Yu, F. Fang, and Z. Qiu, “Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology,” Appl. Opt. 54(5), 986–994 (2015).
    [Crossref] [PubMed]
  8. F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).
  9. F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).
  10. P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
    [Crossref]
  11. ISO TC172/SC7, “Ophthalmic optics and instruments,” https://www.iso.org .
  12. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  13. N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref] [PubMed]
  14. Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
    [Crossref] [PubMed]
  15. F. Karimian, S. Feizi, and A. Doozande, “Higher-order aberrations in myopic eyes,” J. Ophthalmic Vis. Res. 5(1), 3–9 (2010).
    [PubMed]
  16. ISO 8595–1:2014, “Optics and optical instruments-focimeters,” https://www.iso.org .
  17. C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
    [Crossref] [PubMed]
  18. R. Ritter and R. Hahn, “Contribution to analysis of the reflection grating method,” Opt. Lasers Eng. 4(1), 13–24 (1983).
    [Crossref]
  19. Free Form Verifier (FFV), “High-resolution lens inspection system of Rotlex,” https://www.rotlex.com .
  20. M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
    [Crossref]
  21. S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
    [Crossref] [PubMed]
  22. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [PubMed]
  23. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
    [Crossref]
  24. J. Vargas, J. A. Gómez-Pedrero, J. Alonso, and J. A. Quiroga, “Deflectometric method for the measurement of user power for ophthalmic lenses,” Appl. Opt. 49(27), 5125–5132 (2010).
    [Crossref] [PubMed]
  25. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
    [Crossref] [PubMed]
  26. E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
    [Crossref] [PubMed]
  27. E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom. Vis. Sci. 83(9), 672–681 (2006).
    [Crossref] [PubMed]
  28. C. Zhou, W. Wang, K. Yang, X. Chai, and Q. Ren, “Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions,” Appl. Opt. 47(34), 6434–6441 (2008).
    [Crossref] [PubMed]
  29. L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
    [Crossref] [PubMed]
  30. T. Raasch, “Aberrations and spherocylindrical powers within subapertures of freeform surfaces,” J. Opt. Soc. Am. A 28(12), 2642–2646 (2011).
    [Crossref] [PubMed]

2017 (1)

J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).

2015 (2)

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

J. Yu, F. Fang, and Z. Qiu, “Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology,” Appl. Opt. 54(5), 986–994 (2015).
[Crossref] [PubMed]

2014 (6)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

2013 (2)

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
[Crossref] [PubMed]

2012 (3)

J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
[PubMed]

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2008 (1)

2006 (1)

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom. Vis. Sci. 83(9), 672–681 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

2004 (2)

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[Crossref] [PubMed]

2003 (1)

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[Crossref] [PubMed]

2002 (1)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

1997 (1)

1983 (1)

R. Ritter and R. Hahn, “Contribution to analysis of the reflection grating method,” Opt. Lasers Eng. 4(1), 13–24 (1983).
[Crossref]

Acosta, E.

S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
[Crossref] [PubMed]

Adie, S. G.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Alonso, J.

Andre, B.

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Anguiano-Morales, M.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Artal, P.

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom. Vis. Sci. 83(9), 672–681 (2006).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[Crossref] [PubMed]

Avni, I.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

Bao, W.

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

Blendowske, R.

S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
[Crossref] [PubMed]

Boppart, S. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Bullimore, M. A.

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Carney, P. S.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Chai, X.

Chamadoira, S.

S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

Cheema, A.

J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).

Chuck, R. S.

J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).

Cooper, J.

J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
[PubMed]

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Corral-Martínez, L. F.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Doozande, A.

F. Karimian, S. Feizi, and A. Doozande, “Higher-order aberrations in myopic eyes,” J. Ophthalmic Vis. Res. 5(1), 3–9 (2010).
[PubMed]

Evans, C.

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Fang, F.

Fang, F. Z.

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Feizi, S.

F. Karimian, S. Feizi, and A. Doozande, “Higher-order aberrations in myopic eyes,” J. Ophthalmic Vis. Res. 5(1), 3–9 (2010).
[PubMed]

Gómez-Pedrero, J. A.

Hahn, R.

R. Ritter and R. Hahn, “Contribution to analysis of the reflection grating method,” Opt. Lasers Eng. 4(1), 13–24 (1983).
[Crossref]

Hausler, G.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Huang, C. Y.

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Jamal, N.

J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
[PubMed]

Jiang, W.

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

Kaminski, J.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Karimian, F.

F. Karimian, S. Feizi, and A. Doozande, “Higher-order aberrations in myopic eyes,” J. Ophthalmic Vis. Res. 5(1), 3–9 (2010).
[PubMed]

Knauer, M. C.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Kuryan, J.

J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).

Levy, Y.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

Li, L.

Liang, J.

Liu, Y. Z.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Malacara-Doblado, D.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Mendoza-Villegas, P. G.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Miller, D. T.

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Qiu, Z.

J. Yu, F. Fang, and Z. Qiu, “Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology,” Appl. Opt. 54(5), 986–994 (2015).
[Crossref] [PubMed]

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).

Quiroga, J. A.

Raasch, T.

Raasch, T. W.

L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
[Crossref] [PubMed]

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Ren, Q.

Ritter, R.

R. Ritter and R. Hahn, “Contribution to analysis of the reflection grating method,” Opt. Lasers Eng. 4(1), 13–24 (1983).
[Crossref]

Salas-Peimbert, D. P.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Schulman, E.

J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
[PubMed]

Segal, O.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Sheedy, J. E.

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

South, F. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Tang, W.

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

Trujillo-Schiaffion, G.

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Vargas, J.

Villegas, E. A.

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom. Vis. Sci. 83(9), 672–681 (2006).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[Crossref] [PubMed]

Wang, H.

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

Wang, W.

Weckenmann, A.

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Williams, D. R.

Yang, K.

Yi, A. Y.

L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
[Crossref] [PubMed]

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

Yu, J.

J. Yu, F. Fang, and Z. Qiu, “Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology,” Appl. Opt. 54(5), 986–994 (2015).
[Crossref] [PubMed]

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).

Zadok, D.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

Zhang, G.

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Zhang, X.

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Zhou, C.

Am. J. Ophthalmol. (1)

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[Crossref] [PubMed]

Appl. Opt. (4)

CIRP Ann. Manuf. Technol. (1)

F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Cochrane Database Syst. Rev. (1)

J. Kuryan, A. Cheema, and R. S. Chuck, “Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-site keratomileusis (LASIK) for correcting myopia,” Cochrane Database Syst. Rev. 2, CD011080 (2017).

Comput. Aided Des. (1)

W. Jiang, W. Bao, W. Tang, and H. Wang, “A variational-difference numerical method for designing progressive-addition lenses,” Comput. Aided Des. 48, 17–27 (2014).
[Crossref]

J. Ophthalmic Vis. Res. (1)

F. Karimian, S. Feizi, and A. Doozande, “Higher-order aberrations in myopic eyes,” J. Ophthalmic Vis. Res. 5(1), 3–9 (2010).
[PubMed]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

MAFO (2)

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 1,” MAFO 10(3), 16–19 (2014).

F. Z. Fang, J. Yu, and Z. Qiu, “Measurement and evaluation of freeform spectacle lenses-part 2,” MAFO 11(4), 34–40 (2014).

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

R. Ritter and R. Hahn, “Contribution to analysis of the reflection grating method,” Opt. Lasers Eng. 4(1), 13–24 (1983).
[Crossref]

Opt. Pura Appl. (1)

P. G. Mendoza-Villegas, G. Trujillo-Schiaffion, D. P. Salas-Peimbert, M. Anguiano-Morales, D. Malacara-Doblado, and L. F. Corral-Martínez, “Measurement of spectacle lenses: A review,” Opt. Pura Appl. 47(2), 145–162 (2014).
[Crossref]

Optom. Vis. Sci. (4)

S. Chamadoira, R. Blendowske, and E. Acosta, “Progressive addition lens measurement by point diffraction interferometry,” Optom. Vis. Sci. 89(10), 1532–1542 (2012).
[Crossref] [PubMed]

C. Y. Huang, T. W. Raasch, A. Y. Yi, J. E. Sheedy, B. Andre, and M. A. Bullimore, “Comparison of three techniques in measuring progressive addition lenses,” Optom. Vis. Sci. 89(11), 1564–1573 (2012).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom. Vis. Sci. 83(9), 672–681 (2006).
[Crossref] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[Crossref] [PubMed]

Optometry (1)

J. Cooper, E. Schulman, and N. Jamal, “Current status on the development and treatment of myopia,” Optometry 83(5), 179–199 (2012).
[PubMed]

Proc. SPIE (2)

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Other (3)

Free Form Verifier (FFV), “High-resolution lens inspection system of Rotlex,” https://www.rotlex.com .

ISO 8595–1:2014, “Optics and optical instruments-focimeters,” https://www.iso.org .

ISO TC172/SC7, “Ophthalmic optics and instruments,” https://www.iso.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Scheme of the eye rotation based model in the real view condition.

Fig. 2
Fig. 2

Diagram of the experimental apparatus.

Fig. 3
Fig. 3

Measurement procedure.

Fig. 4
Fig. 4

Locations of planned measurement subarea.

Fig. 5
Fig. 5

Coordinate systems definition of the experimental apparatus.

Fig. 6
Fig. 6

Angle changes of casing pipe (a) and displacement coordinates of light source (b).

Fig. 7
Fig. 7

Wavefront aberration of HSS before (a) and after (b) calibration.

Fig. 8
Fig. 8

Wavefront aberration of 109 measured subareas.

Fig. 9
Fig. 9

Zernike coefficients of wavefront aberrations of center and corner subareas.

Fig. 10
Fig. 10

Distribution of equivalent spherical power (a) and cylindrical power (b) of SP1.

Fig. 11
Fig. 11

Wavefront aberrations of 109 measured subareas.

Fig. 12
Fig. 12

Zernike coefficients of wavefront aberrations of five representative subareas.

Fig. 13
Fig. 13

Distribution of equivalent spherical power (a) and cylindrical power (b) of PAL1.

Fig. 14
Fig. 14

Sectional power variation along the vertical center line.

Tables (1)

Tables Icon

Table 1 Evaluation of the Motion Platforms

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ ω=arctan x d 1 θ=arctan y d 1 ω =ω θ =θ x =( d 1 + d 3 )tan ω y =( d 1 + d 3 )tan θ
{ SPH= 4 3 r 2 C 5 CYL= 2 6 r 2 C 4 2 + C 6 2

Metrics