Abstract

In this paper, we report a novel mechanism to simultaneously provide secure connections for multiple users in indoor optical wireless communication systems by employing the time-slot coding scheme together with chaotic phase sequence. The chaotic phase sequence is generated according to the logistic map and applied to each symbol to secure the transmission. Proof-of-concept experiments are carried out for multiple system capacities based on both 4-QAM and 16-QAM modulation formats, i.e. 1.25 Gb/s, 2 Gb/s and 2.5 Gb/s for 4-QAM, and 2.5 Gb/s, 3.33 Gb/s and 4 Gb/s for 16-QAM. Experimental results show that in all cases the added chaotic phase does not degrade the legitimate user’s signal quality while the illegal user cannot detect the signal without the key.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-slot coding scheme for multiple access in indoor optical wireless communications

Tian Liang, Ke Wang, Christina Lim, Elaine Wong, Tingting Song, and Ampalavanapillai Nirmalathas
Opt. Lett. 41(22) 5166-5169 (2016)

Secure transmission for mixed FSO-RF relay networks with physical-layer key encryption and wiretap coding

Dawei Wang, Pinyi Ren, Julian Cheng, Qinghe Du, Yichen Wang, and Li Sun
Opt. Express 25(9) 10078-10089 (2017)

Performance Analysis of Physical-Layer Security in an OCDMA-Based Wiretap Channel

Jianhua Ji, Guirong Zhang, Wenjun Li, Lu Sun, Ke Wang, and Ming Xu
J. Opt. Commun. Netw. 9(10) 813-818 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
    [Crossref]
  2. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed indoor optical wireless communication system with single channel imaging receiver,” Opt. Express 20(8), 8442–8456 (2012).
    [Crossref] [PubMed]
  3. E. Hanada, “The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital,” Ann. Ist. Super. Sanita 43(3), 208–217 (2007).
    [PubMed]
  4. M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, and A. E. Willner, “Demonstration of a 280 Gbit/s free-space space-division-multiplexing communications link utilizing plane-wave spatial multiplexing,” Opt. Lett. 41(5), 851–854 (2016).
    [Crossref] [PubMed]
  5. Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Optical Fiber Communication Conference (2017), paper Th5A.6.
    [Crossref]
  6. Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.
  7. O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
    [Crossref]
  8. T. Liang, K. Wang, C. Lim, E. Wong, T. Song, and A. Nirmalathas, “Time-slot coding scheme for multiple access in indoor optical wireless communications,” Opt. Lett. 41(22), 5166–5169 (2016).
    [Crossref] [PubMed]
  9. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  10. J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
    [Crossref]
  11. M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (2013), pp. 3927–3932.
    [Crossref]
  12. A. Mostafa and L. Lampe, “Physical-layer security for indoor visible light communications,” in Proceedings of IEEE International Conference on Communications (2014), pp. 3342–3347.
    [Crossref]
  13. J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
    [Crossref]
  14. W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
    [Crossref]
  15. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
    [Crossref] [PubMed]
  16. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
    [Crossref] [PubMed]
  17. J. C. Sprott, Chaos and Time-Series Analysis (Oxford University, 2003), Chap.2.
  18. R. L. Rivest, “Chaffing and winnowing: confidentiality without encryption,” Crypto Bytes 4(1), 12–17 (1998).
  19. J. C. Sprott, Chaos and Time-Series Analysis (Oxford University, 2003), Chap.5.
  20. C. Zhang, “Period three begins,” Math. Mag. 83(4), 295–297 (2010).
    [Crossref]
  21. AS/NZS 2211.1:2004, Safety of laser products (Standards Australia International Ltd and Standards New Zealand, 2004).
  22. K. Cho and D. Yoon, “On the general BER expression of one-and-two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
    [Crossref]
  23. J. G. Proakis, Digital Communications (McGraw-Hill, 2000), Chap. 5.

2016 (3)

2015 (3)

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

2014 (1)

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

2012 (1)

2010 (1)

C. Zhang, “Period three begins,” Math. Mag. 83(4), 295–297 (2010).
[Crossref]

2008 (1)

2007 (1)

E. Hanada, “The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital,” Ann. Ist. Super. Sanita 43(3), 208–217 (2007).
[PubMed]

2002 (2)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

K. Cho and D. Yoon, “On the general BER expression of one-and-two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

1998 (1)

R. L. Rivest, “Chaffing and winnowing: confidentiality without encryption,” Crypto Bytes 4(1), 12–17 (1998).

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Agaskar, M.

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (2013), pp. 3927–3932.
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Chan, V. W. S.

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (2013), pp. 3927–3932.
[Crossref]

Chen, C.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

Chi, N.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

Cho, K.

K. Cho and D. Yoon, “On the general BER expression of one-and-two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Delgado-Rajo, F. A.

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

Dixon, A. R.

Dynes, J. F.

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Feng, Z.

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

Gomez, A.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Gonzalez, O.

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

Gorman, P. M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Guerra-Medina, M. F.

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Hanada, E.

E. Hanada, “The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital,” Ann. Ist. Super. Sanita 43(3), 208–217 (2007).
[PubMed]

Huang, H.

Jiang, N.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

Jin, W.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Lampe, L.

A. Mostafa and L. Lampe, “Physical-layer security for indoor visible light communications,” in Proceedings of IEEE International Conference on Communications (2014), pp. 3342–3347.
[Crossref]

Lavery, M. P. J.

Li, D.

J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
[Crossref]

Li, J.

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

Liang, T.

Lim, C.

Liu, X.

J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
[Crossref]

Lopez-Hernandez, F. J.

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

Martin-Gonzalez, J. A.

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

Mostafa, A.

A. Mostafa and L. Lampe, “Physical-layer security for indoor visible light communications,” in Proceedings of IEEE International Conference on Communications (2014), pp. 3342–3347.
[Crossref]

Nirmalathas, A.

O’Brien, D.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Qiu, J.

J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
[Crossref]

Qiu, K.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

Quintana, C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Rarity, J. G.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Ren, Y.

Rivest, R. L.

R. L. Rivest, “Chaffing and winnowing: confidentiality without encryption,” Crypto Bytes 4(1), 12–17 (1998).

Sato, M.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Sharpe, A. W.

Shi, J.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

Shi, K.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Shields, A. J.

Skafidas, E.

Song, T.

Tao, L.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

Tapster, P. R.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Thomsen, B. C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Wang, K.

Wang, Y.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

Weinfurter, H.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Willner, A. E.

Wong, E.

Xie, G.

Yoon, D.

K. Cho and D. Yoon, “On the general BER expression of one-and-two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Yuan, Z. L.

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Zhang, C.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

C. Zhang, “Period three begins,” Math. Mag. 83(4), 295–297 (2010).
[Crossref]

Zhang, L.

J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
[Crossref]

Zhang, P.

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

Zhang, W.

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

Ann. Ist. Super. Sanita (1)

E. Hanada, “The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital,” Ann. Ist. Super. Sanita 43(3), 208–217 (2007).
[PubMed]

China Commun. (1)

J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in cognitive radio networks,” China Commun. 12(3), 132–150 (2015).
[Crossref]

Crypto Bytes (1)

R. L. Rivest, “Chaffing and winnowing: confidentiality without encryption,” Crypto Bytes 4(1), 12–17 (1998).

Electron. Lett. (1)

O. Gonzalez, J. A. Martin-Gonzalez, M. F. Guerra-Medina, F. J. Lopez-Hernandez, and F. A. Delgado-Rajo, “Cyclic code-shift extension keying for multi-user optical wireless communications,” Electron. Lett. 51(11), 847–849 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100 Gb/s indoor wire field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

W. Zhang, C. Zhang, W. Jin, C. Chen, N. Jiang, and K. Qiu, “Chaos coding based QAM IQ-encryption for improved security in OFDMA-PON,” IEEE Photonics Technol. Lett. 26(19), 1964–1967 (2014).
[Crossref]

IEEE Trans. Commun. (1)

K. Cho and D. Yoon, “On the general BER expression of one-and-two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Math. Mag. (1)

C. Zhang, “Period three begins,” Math. Mag. 83(4), 295–297 (2010).
[Crossref]

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Qiu, L. Zhang, D. Li, and X. Liu, “High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving,” Opt. Eng. 55(6), 066121 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Other (8)

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Optical Fiber Communication Conference (2017), paper Th5A.6.
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “High-speed LED based visible light communication networks for beyond 10 Gb/s wireless access,” in Proceedings of IEEE 6th International Conference on Wireless Communications and Signal Processing (2014), pp. 1–6.

J. C. Sprott, Chaos and Time-Series Analysis (Oxford University, 2003), Chap.2.

J. C. Sprott, Chaos and Time-Series Analysis (Oxford University, 2003), Chap.5.

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (2013), pp. 3927–3932.
[Crossref]

A. Mostafa and L. Lampe, “Physical-layer security for indoor visible light communications,” in Proceedings of IEEE International Conference on Communications (2014), pp. 3342–3347.
[Crossref]

AS/NZS 2211.1:2004, Safety of laser products (Standards Australia International Ltd and Standards New Zealand, 2004).

J. G. Proakis, Digital Communications (McGraw-Hill, 2000), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Signal constellation for a general square QAM.
Fig. 2
Fig. 2 Noisy probability for (a) 4-QAM and (b) 16-QAM.
Fig. 3
Fig. 3 Outage probability with δ = 1e-10 for (a) 4-QAM and (b) 16-QAM.
Fig. 4
Fig. 4 Block diagram of secure OWC with TSC and chaotic phase.
Fig. 5
Fig. 5 Experimental setup
Fig. 6
Fig. 6 Power penalty results with different bit rates for (a) 4-QAM and (b) 16-QAM.
Fig. 7
Fig. 7 SER performance and constellation with and without the key for (a) 2.5 Gb/s 4-QAM and (b) 4 Gb/s 16-QAM.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x i+1 =r x i (1 x i ). r[ 0,4 ], x 1 (0,1).
θ[ n ]=360x[ n ], n=1,2,,N .
β( I,Q )={ cos 1 I 2 I+Q I 2 + Q 2 ( I1 ) 2 I 2 + Q 2 , IQ cos 1 Q 2 +Q+I I 2 + Q 2 ( Q+1 ) 2 I 2 + Q 2 , I>Q γ( I,Q )={ cos 1 I 2 I+Q I 2 + Q 2 ( I+1 ) 2 I 2 + Q 2 , I<Q cos 1 Q 2 Q+I I 2 + Q 2 ( Q1 ) 2 I 2 + Q 2 , IQ
I=2a1 2 l , 1a 2 l . Q=2b1 2 l , 1b 2 l .
β( I,Q )<θ[ n ]< 360 γ( I,Q ).
Ρ noisy = 1 4 l1 I,Q P( β( I,Q )<θ[ n ]< 360 γ( I,Q ) ) .
r e = r b +δ, x 1 e = x 1 b +δ
Ρ out = 1 4 l1 I,Q P( γ( I,Q ) θ b [ n ] θ e [ n ]β( I,Q ) )
C k =[ 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 ]

Metrics