Abstract

In this letter, we report a flexible, all-dielectric metasurface fabricated via nanosphere lithography (NSL) and demonstrate its potentials in sensing applications. Regularly arrayed Si cylinders with hexagonal lattice fabricated on polyethylene terephthalate (PET) flexible substrate are exploited to detect applied strain and surface dielectric environment by measuring transmission spectra. Further numerical simulations coincide with experimental observations. The transmission peak can be attributed to coupled magnetic Mie resonance between close-packed Si cylinders. Such Mie resonance based sensor with high flexibility offers an alternative approach towards detecting surrounding variations besides traditional plasmon resonance based sensors, and provides more choices for designing photonic devices operating in the optical regime.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible and tunable terahertz all-dielectric metasurface composed of ceramic spheres embedded in ferroelectric/ elastomer composite

Chuwen Lan, Di Zhu, Jiannan Gao, Bo Li, and Zehua Gao
Opt. Express 26(9) 11633-11638 (2018)

Advances in optical metasurfaces: fabrication and applications [Invited]

Vin-Cent Su, Cheng Hung Chu, Greg Sun, and Din Ping Tsai
Opt. Express 26(10) 13148-13182 (2018)

Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]

Viktoriia E. Babicheva, Mihail I. Petrov, Kseniia V. Baryshnikova, and Pavel A. Belov
J. Opt. Soc. Am. B 34(7) D18-D28 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
    [Crossref]
  5. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
    [Crossref]
  6. Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
    [Crossref]
  7. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
    [Crossref]
  8. C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
    [Crossref] [PubMed]
  9. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
    [Crossref]
  10. F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
    [Crossref]
  11. J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  12. G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D Appl. Phys. 48(3), 035105 (2015).
    [Crossref]
  13. J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
    [Crossref]
  14. A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
    [Crossref]
  15. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
    [Crossref] [PubMed]
  16. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
    [Crossref]
  17. P.-C. Li and E. T. Yu, “Flexible, low-loss, large-area, wide-angle, wavelength-selective plasmonic multilayer metasurface,” J. Appl. Phys. 114(13), 133104 (2013).
    [Crossref]
  18. X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
    [Crossref]
  19. R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
    [Crossref]
  20. F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
    [Crossref]
  21. A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
    [Crossref] [PubMed]
  22. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  23. V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
    [Crossref]
  24. L. Lewin, “The Electrical Constants of a Material Loaded with Spherical Particles,” Proc. Inst. Electr. Eng. 94(27), 65 (1947).
  25. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  26. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  27. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  28. P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
    [Crossref]
  29. P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  30. J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
    [Crossref]
  31. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  32. Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
    [Crossref]
  33. X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
    [Crossref]
  34. Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
    [Crossref]
  35. SOPRA N&K Database, www.refractiveindex.info .
  36. K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).
  37. Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
    [Crossref]
  38. A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
    [Crossref]

2016 (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

2015 (6)

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D Appl. Phys. 48(3), 035105 (2015).
[Crossref]

2014 (4)

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

2013 (5)

P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

P.-C. Li and E. T. Yu, “Flexible, low-loss, large-area, wide-angle, wavelength-selective plasmonic multilayer metasurface,” J. Appl. Phys. 114(13), 133104 (2013).
[Crossref]

2012 (4)

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

2011 (3)

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

2010 (1)

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

2009 (4)

F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
[Crossref]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

2008 (2)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2003 (1)

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1991 (1)

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

1947 (1)

L. Lewin, “The Electrical Constants of a Material Loaded with Spherical Particles,” Proc. Inst. Electr. Eng. 94(27), 65 (1947).

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Ahmadi, A.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[Crossref]

Averitt, R. D.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Baca, A. J.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Belov, P.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Belov, P. A.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Bhaskaran, M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Bi, K.

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Bogart, G. R.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Braun, P.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Cain, T.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Carlson, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Cheong, H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Chichkov, B. N.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Chong, C. T.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Chuo, Y.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Cloots, R.

P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
[Crossref]

Colson, P.

P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D Appl. Phys. 48(3), 035105 (2015).
[Crossref]

Demir, H. V.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Ebels, U.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
[Crossref]

Economou, E. N.

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Falco, A. D.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Fan, K.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Feng, S.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Fujisawa, M.

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Giersig, M.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
[Crossref]

Greenwald, A.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Guo, Y.

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Gupta, S.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Henrist, C.

P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
[Crossref]

Hohertz, D.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Iiyama, K.

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

Ishida, T.

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jae Shin, Y.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jay Guo, L.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kafesaki, M.

Kaminska, B.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Kang, J. H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Katsarakis, N.

Kavanagh, K. L.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Kenanakis, G.

Kim, K. W.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kim, Y. H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kim, Y. J.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kivshar, Y.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Kivshar, Y. S.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Konstantinidis, G.

Kosku Perkgoz, N.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Krasnok, A.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Krauss, T. F.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Kuzmiak, V.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Kyu Kwak, M.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Lan, C.

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Landrock, C.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Lapine, M.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Lee, K.-T.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Lee, Y. P.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Lewin, L.

L. Lewin, “The Electrical Constants of a Material Loaded with Spherical Particles,” Proc. Inst. Electr. Eng. 94(27), 65 (1947).

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Li, P.-C.

P.-C. Li and E. T. Yu, “Flexible, low-loss, large-area, wide-angle, wavelength-selective plasmonic multilayer metasurface,” J. Appl. Phys. 114(13), 133104 (2013).
[Crossref]

li, W.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Liu, A. Q.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Liu, X.

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Liu, Y.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Liu, Z.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Makarov, S.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Markos, P.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Maruyama, T.

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

McPhedran, R. C.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Melik, R.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

Metcalfe, G. D.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Minghui, H.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Miyamaru, F.

F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Mosallaei, H.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[Crossref]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Nishijima, M.

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

Ok, J. G.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Okada, T.

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

Omrane, B.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Ono, Y.

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Perkgoz, N. K.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

Petrov, M.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Ploschner, M.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Powell, D. A.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Puttlitz, C.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

Qiu, K.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Rahmani, M.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D Appl. Phys. 48(3), 035105 (2015).
[Crossref]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Rhee, J. Y.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Rybczynski, J.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
[Crossref]

Savelev, R.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seok Youn, H.

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Seren, H. R.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

Shadrivov, I. V.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shigeta, K.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stavrinidis, A.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Szoplik, T.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Taguchi, Y.

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

Taima, K.

F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
[Crossref]

Takaoka, T.

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

Tang, L.

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Tsai, D. P.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Unal, E.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Ung, B. S. Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Valentine, J.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Wada Takeda, M.

F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
[Crossref]

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Wang, J.

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wraback, M.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

Wu, C.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Wu, H.

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Xie, L.

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Yamagishi, T.

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

Yandong, G.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Ying, Y.

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Yoo, Y. J.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Yu, E. T.

P.-C. Li and E. T. Yu, “Flexible, low-loss, large-area, wide-angle, wavelength-selective plasmonic multilayer metasurface,” J. Appl. Phys. 114(13), 133104 (2013).
[Crossref]

Zaichun, C.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, J.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

Zhang, X.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhao, R.

Zhao, X.

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

Zheludev, N. I.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Zheng, H. Y.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Zhou, J.

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhu, W. M.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Adv. Funct. Mater. (1)

X. Liu, J. Wang, L. Tang, L. Xie, and Y. Ying, “Flexible Plasmonic Metasurfaces with User-Designed Patterns for Molecular Sensing and Cryptography,” Adv. Funct. Mater. 26(30), 5515–5523 (2016).
[Crossref]

Adv. Mater. (2)

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Appl. Phys. Express (1)

F. Miyamaru, M. Wada Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2, 042001 (2009).
[Crossref]

Appl. Phys. Lett. (8)

J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. G. Ok, H. Seok Youn, M. Kyu Kwak, K.-T. Lee, Y. Jae Shin, L. Jay Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

F. Zhang, Z. Liu, K. Qiu, W. Zhang, C. Wu, and S. Feng, “Conductive rubber based flexible metamaterial,” Appl. Phys. Lett. 106(6), 061906 (2015).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Y. Guo, J. Zhou, C. Lan, H. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104(20), 204103 (2014).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 1–6 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, and T. Yamagishi, “Fabrication and Characterization of Amorphous Polyethylene Terephthalate Optical Waveguides,” IEEE Photonics Technol. Lett. 23(5), 275–277 (2011).

IEEE Sens. J. (1)

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

J. Appl. Phys. (1)

P.-C. Li and E. T. Yu, “Flexible, low-loss, large-area, wide-angle, wavelength-selective plasmonic multilayer metasurface,” J. Appl. Phys. 114(13), 133104 (2013).
[Crossref]

J. Chem. Phys. (1)

Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, “Adsorbed state of benzene on the Si(100) surface: Thermal desorption and electron energy loss spectroscopy studies,” J. Chem. Phys. 95(9), 6870–6876 (1991).
[Crossref]

J. Nanomater. (1)

P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” J. Nanomater. 2013, 1–19 (2013).
[Crossref]

J. Opt. (1)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D Appl. Phys. 48(3), 035105 (2015).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Proc. Inst. Electr. Eng. (1)

L. Lewin, “The Electrical Constants of a Material Loaded with Spherical Particles,” Proc. Inst. Electr. Eng. 94(27), 65 (1947).

Proc. SPIE (1)

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sens. Actuators A Phys. 231, 74–80 (2015).
[Crossref]

Other (1)

SOPRA N&K Database, www.refractiveindex.info .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of the main fabricating procedures for the flexible, all-dielectric metasurface.
Fig. 2
Fig. 2 SEM images of (a) self-assembled PS spheres and (b) Si cylinders formed after RIEs. Both show regularly arrayed hexagonal lattice. The inset in (b) is the tilted view (60°) of a specially chosen defective area for better illustration of the spatial morphology. Scale bars in both images represent 1 μm. (c) Final metasurface sample demonstrates its flexibility. The interference color indicates the presence of a compactly arrayed patterns.
Fig. 3
Fig. 3 Measured transmission spectra of the metasurface sample with and without out-of-plane strain. The resonant peak presents a red-shift when bended.
Fig. 4
Fig. 4 (a) Measured transmission spectra of the metasurface sample with PMMA coating under different spin speeds settings. (b) Extracted resonant peak positions from (a). The ‘∞’ symbol in horizontal axis denotes the state at which no PMMA is spin-coated. Red-shifts of resonant peak positions are observed with the increase of PMMA thickness.
Fig. 5
Fig. 5 (a) Schematic view of the basic configurations for numerical simulations. Unit cells with 60° rhombic lattice are utilized to represent the actual hexagonal arrays. (b) Simulated transmission spectra regarding different thicknesses of PMMA coated on the metasurface. The resonant peak position experiences a red-shift with the increase of PMMA coating thickness, coinciding with the measured tendency shown in Fig. 4. (c) Simulated magnetic field distribution on the x-y plane and (d) electric field distribution on the y-z plane at resonance for the original metasurface without PMMA coating.
Fig. 6
Fig. 6 Simulated transmission spectra with different distance between neighbored Si cylinders. The transmission peak is suppressed when increasing the spacing, accompanied with the formation of the transmission dip.

Metrics