Abstract

The resolution of digital micro-mirror device (DMD) scanning lithography is limited in the transverse direction (the scanning direction is vertical) as a result of the compacted size of the DMD micro-mirror and the low magnification of the projection lens. Above-stated restrictions lead to an unsatisfactory saw-tooth edge (size ~one DMD pixel) after the lithography process within all directions except for the scanning orientation. In order to smooth the edge, an optimized sub-pattern construction method, described as the combination of wobulation techniques and the continuous scanning lithography process, is proposed. Afterward, lithography experiments were implemented by introducing the wobulation techniques within the DMD scanning lithography system. The experimental results show that the saw-tooth edge is reduced to nearly 0.5 pixel size after 1/2 pixel dislocation superposition exposure, and is even scaled down to less than 0.1 pixel after 1/4 pixel dislocation superposition exposure. At this point, the edge of the lithography pattern is appropriately smoothed. The effectiveness of the above-mentioned method that improves the edge smoothness of the lithography pattern is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation

Ying Zhang, Jun Luo, Zheng Xiong, Hua Liu, Li Wang, Yingying Gu, Zifeng Lu, Jinhuan Li, and Jipeng Huang
Opt. Express 27(22) 31956-31966 (2019)

Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication

Xiang-Yu Ding, Yu-Xuan Ren, Lei Gong, Zhao-Xiang Fang, and Rong-De Lu
Appl. Opt. 53(24) 5307-5311 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
    [Crossref] [PubMed]
  2. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  3. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
    [Crossref]
  4. S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
    [Crossref] [PubMed]
  5. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
    [Crossref] [PubMed]
  6. P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
    [Crossref] [PubMed]
  7. K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
    [Crossref] [PubMed]
  8. J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
    [Crossref] [PubMed]
  9. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
    [Crossref] [PubMed]
  10. D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
    [Crossref] [PubMed]
  11. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
    [Crossref]
  12. X. Y. Ding, Y. X. Ren, L. Gong, Z. X. Fang, and R. D. Lu, “Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication,” Appl. Opt. 53(24), 5307–5311 (2014).
    [Crossref] [PubMed]
  13. S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
    [Crossref] [PubMed]
  14. Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
    [Crossref]
  15. N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
    [Crossref] [PubMed]
  16. K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
    [Crossref]
  17. W. Allen and R. Ulichney, 47.4: Invited paper, “Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd. (2005), pp. 1514–1517.
    [Crossref]
  18. J. M. Younse, “Mirrors on a chip,” Spectrum (IEEE, 1993), pp. 27–31.
  19. B. Sampsell, “Digital micro-mirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
    [Crossref]

2016 (1)

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

2015 (2)

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
[Crossref] [PubMed]

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

2014 (4)

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

X. Y. Ding, Y. X. Ren, L. Gong, Z. X. Fang, and R. D. Lu, “Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication,” Appl. Opt. 53(24), 5307–5311 (2014).
[Crossref] [PubMed]

S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
[Crossref] [PubMed]

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

2012 (1)

2010 (1)

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

2009 (1)

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

2008 (2)

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

2007 (2)

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

2006 (2)

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

1994 (1)

B. Sampsell, “Digital micro-mirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

Ali, S.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

Allen, W.

W. Allen and R. Ulichney, 47.4: Invited paper, “Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd. (2005), pp. 1514–1517.
[Crossref]

Bisso, P. W.

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

Boisen, A.

Bong, K. W.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

Cheng, C. H.

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

Chigrinov, V.

Cho, H.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

Choi, J. W.

Choi, S. E.

Chung, B. G.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

Chung, S. E.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Collins, J.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Dendukuri, D.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Ding, X. Y.

Doyle, P. S.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Esashi, M.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

Fang, Z. X.

Fujishiro, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

Gong, L.

Gu, S. S.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

Ha, Y. M.

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

Hakimi, N.

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

Han, S.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
[Crossref] [PubMed]

Hatton, T. A.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Hu, H. C.

Hu, W.

Hwang, D. K.

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

Irimia, D.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

Khademhosseini, A.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

Kim, H. C.

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

Kim, J. J.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

Kim, K.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
[Crossref] [PubMed]

Kwon, S.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
[Crossref] [PubMed]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Lee, H. S.

Lee, J.

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

Lee, S. A.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Lee, S. H.

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

Lim, E.

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

Lin, X. W.

Lo, E.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

Lu, R. D.

Lu, Y. Q.

Mogensen, K. B.

Panda, P.

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

Park, H.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, H. K.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Park, I. B.

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

Park, N.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, W.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

S. H. Song, K. Kim, S. E. Choi, S. Han, H. S. Lee, S. Kwon, and W. Park, “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication,” Opt. Lett. 39(17), 5162–5165 (2014).
[Crossref] [PubMed]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Pregibon, D. C.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Ren, Y. X.

Rindzevicius, T.

Sampsell, B.

B. Sampsell, “Digital micro-mirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

Schmidt, M. S.

Shin, S.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Song, S. H.

Srinivas, R. L.

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

Swiston, A. J.

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

Tanaka, S.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

Totsu, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

Tsai, S. S. H.

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

Ulichney, R.

W. Allen and R. Ulichney, 47.4: Invited paper, “Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd. (2005), pp. 1514–1517.
[Crossref]

Wu, H.

Wu, K.

Xiao, S.

Yoon, J.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Yu, K.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Zhu, G.

Adv. Mater. (1)

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang, “One-Step Two-Dimensional Microfluidics-Based Synthesis of Three-Dimensional Particles,” Adv. Mater. 26(9), 1393–1398 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a mask-less lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic mask-less lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

Y. M. Ha, I. B. Park, H. C. Kim, and S. H. Lee, “Three-dimensional microstructure using partitioned cross-sections in projection microstereo lithography,” Int. J. Precis. Eng. Manuf. 11(2), 335–340 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

B. Sampsell, “Digital micro-mirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

Lab Chip (3)

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab Chip 8(7), 1056–1061 (2008).
[Crossref] [PubMed]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[Crossref] [PubMed]

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

Langmuir (1)

K. W. Bong, J. J. Kim, H. Cho, E. Lim, P. S. Doyle, and D. Irimia, “Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions,” Langmuir 31(48), 13165–13171 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, “Universal process-inert encoding architecture for polymer microparticles,” Nat. Mater. 13(5), 524–529 (2014).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using mask-less gray-scale lithography,” Sens. Actuators A Phys. 130-131(2), 387–392 (2006).
[Crossref]

Other (2)

W. Allen and R. Ulichney, 47.4: Invited paper, “Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd. (2005), pp. 1514–1517.
[Crossref]

J. M. Younse, “Mirrors on a chip,” Spectrum (IEEE, 1993), pp. 27–31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 DMD scanning lithography system.
Fig. 2
Fig. 2 Experimental principle of DMD scanning lithography.
Fig. 3
Fig. 3 Flow chart of experiment.
Fig. 4
Fig. 4 The procedure of processing sub-patterns. (a) The underlying pattern, (b) Extract the edge, (c) Edges to be processed, (d) Sub-pattern 1, (e) Sub-pattern 2, (f) Sub-pattern 3.
Fig. 5
Fig. 5 Sketch map of dislocation stacking of sub-patterns. (a) No shift, (b) X: 1/2 shift (left), Y: 1/2 shift (down), (c) X: 1/2 shift (left), Y: 1/2 shift (down).
Fig. 6
Fig. 6 Simulation result of the non-wobulation DMD scanning lithography.
Fig. 7
Fig. 7 Simulation results of DMD scanning lithography based on dislocation superposition principle of sub-patterns. (a) X: 1/2 shift (left), Y: 1/2 shift (down), (b) X: 1/2 shift (right), Y: 1/2 shift (down), (c) X: 1/2 shift (left or right), (d) the comprehensive shift.
Fig. 8
Fig. 8 Experimental results of non-wobulation DMD scanning exposure.
Fig. 9
Fig. 9 Half pixel sub-pattern dislocation overlap exposure experiment.
Fig. 10
Fig. 10 1/4 pixel sub-pattern dislocation overlap exposure experiment.
Fig. 11
Fig. 11 Edge structure under a × 100 times microscope.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H= 1 m I i ×t ,
t= L v ,
M i = L 2 i (i=1,2,3) ,
T=m×t ,
t = T n ,
I w = I i /n .

Metrics