Abstract

We propose a new gain fiber structure with an inverse index profile for high power amplification of a Gaussian single mode beam. A large mode area (LMA) design can be fulfilled with the inverse index profile by implementing a graded index in the depressed core. We numerically show that the proposed gain fiber can guide a single mode Gaussian beam with a large beam area and amplify the beam to a kW level output power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber

Lingchao Kong, Jinyong Leng, Pu Zhou, and Zongfu Jiang
Opt. Express 25(19) 23437-23450 (2017)

Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area
for single-mode kW operation
in a compact coilable package

John R. Marciante, Vladimir V. Shkunov, and David A. Rockwell
Opt. Express 20(18) 20238-20254 (2012)

Output characteristic of a gain guided, index anti-guided fiber amplifier under the condition of gain saturation

Hyun Su Kim and Martin C. Richardson
Opt. Express 17(18) 15969-15974 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  3. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
    [Crossref]
  4. L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [Crossref]
  5. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jacobson, and K. Tankala, “Effective single-mode chirally-coupled core fiber, ” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  6. J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
    [Crossref]
  7. A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), 1617–1628 (2003).
    [Crossref] [PubMed]
  8. Y. Chen, V. Sudesh, T. McComb, M. C. Richardson, M. Bass, and J. Ballato, “Lasing in a Gain Guided Index Anti-Guided Fiber,” J. Opt. Soc. Am. B 24(8), 1683–1688 (2007).
    [Crossref]
  9. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  10. H. S. Kim and M. C. Richardson, “Output characteristic of a gain guided, index anti-guided fiber amplifier under the condition of gain saturation,” Opt. Express 17(18), 15969–15974 (2009).
    [Crossref] [PubMed]
  11. D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am. 68(1), 103–109 (1978).
    [Crossref]
  12. C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
    [Crossref]
  13. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  14. W. Koechner and M. Bass, Solid-States (Springer-Verlag, 2003), Chap.2. & Chap.4.
  15. A. J. van Wonderen, “Influence of transverse effects on self-induced polarization changes in an isotropic Kerr medium,” J. Opt. Soc. Am. B 14(5), 1118–1129 (1997).
    [Crossref]
  16. H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).
  17. A. Yariv, Quantum Electronics 3rd ed., (John Wiley & Sons, USA, 1989), Chap. 6.
  18. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  19. A. E. Siegman, Laser (Oxford University Press, 1986), Chap.8.
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, USA, 1991), Chap.1.
  21. C. D. Hussey and F. Martinez, “Approximate Analytic Forms for the Propagation Characteristic of Single-Mode optical Fibers,” Electron. Lett. 21(23), 1103–1104 (1985).
    [Crossref]
  22. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  23. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  24. N. Xia and S. Yoo, “Mode instability in ytterbium-doped non-circular fibers,” Opt. Express 25(12), 13230–13251 (2017).
    [Crossref] [PubMed]
  25. J. Sakai and T. Kimura, “Bending loss of propagation modes in arbitrary-index profile optical fibers,” Appl. Opt. 17(10), 1499–1506 (1978).
    [Crossref] [PubMed]
  26. H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
    [Crossref]
  27. D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  28. G. P. Agrawal, Nonlinear fiber optics, (Academic, San Diego, 2001), Chap.6.
  29. A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical Fiber Fabrication Using Novel Gas-Phase Deposition Technique,” J. Lightwave Technol. 29(6), 912–915 (2011).
    [Crossref]
  30. J. Zheng, W. Zhao, B. Zhao, C. Hou, Z. Li, G. Li, Q. Gao, P. Ju, W. Gao, S. She, P. Wu, and W. Li, “4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 7(4), 1259–1266 (2017).
    [Crossref]
  31. F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Dong, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

2013 (1)

2012 (3)

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

2009 (3)

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
[Crossref]

H. S. Kim and M. C. Richardson, “Output characteristic of a gain guided, index anti-guided fiber amplifier under the condition of gain saturation,” Opt. Express 17(18), 15969–15974 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2003 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

1999 (1)

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

A. J. van Wonderen, “Influence of transverse effects on self-induced polarization changes in an isotropic Kerr medium,” J. Opt. Soc. Am. B 14(5), 1118–1129 (1997).
[Crossref]

1985 (1)

C. D. Hussey and F. Martinez, “Approximate Analytic Forms for the Propagation Characteristic of Single-Mode optical Fibers,” Electron. Lett. 21(23), 1103–1104 (1985).
[Crossref]

1978 (2)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Ballato, J.

Barty, C. P. J.

Bass, M.

Beach, R. J.

Boyland, A. J.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Cha, B. H.

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

Chen, Y.

Clarkson, W. A.

Codemard, C. A.

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

Dajani, I.

Dawson, J. W.

Dong, L.

Dunn, C.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Fu, L.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Gao, Q.

Gao, W.

Ghosh, D.

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Hawkins, T. W.

Heebner, J. E.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Hosain, S. I.

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

Hou, C.

Hussey, C. D.

C. D. Hussey and F. Martinez, “Approximate Analytic Forms for the Propagation Characteristic of Single-Mode optical Fibers,” Electron. Lett. 21(23), 1103–1104 (1985).
[Crossref]

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jauregui, C.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jones, M.

Ju, P.

Kalichevsky-Dong, M. T.

Kalita, M. P.

Kim, H. S.

H. S. Kim and M. C. Richardson, “Output characteristic of a gain guided, index anti-guided fiber amplifier under the condition of gain saturation,” Opt. Express 17(18), 15969–15974 (2009).
[Crossref] [PubMed]

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

Kimura, T.

Ko, D. K.

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

Kong, F.

Lee, J.

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

Li, G.

Li, J.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Li, W.

Li, Z.

Lim, G.

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

Limpert, J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marciante, J. R.

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
[Crossref]

Marcuse, D.

Martinez, F.

C. D. Hussey and F. Martinez, “Approximate Analytic Forms for the Propagation Characteristic of Single-Mode optical Fibers,” Electron. Lett. 21(23), 1103–1104 (1985).
[Crossref]

McComb, T.

Mckay, H. A.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Messerly, M. J.

Mohapatra, H.

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

Mountfort, F. H.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Parsons, J.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Pattojoshi, P.

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

Pax, P. H.

Payne, D. N.

Richardson, D. J.

Richardson, M. C.

Robin, C.

Sahu, J. K.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical Fiber Fabrication Using Novel Gas-Phase Deposition Technique,” J. Lightwave Technol. 29(6), 912–915 (2011).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

Sakai, J.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, O.

Schreiber, T.

She, S.

Shverdin, M. Y.

Siders, C. W.

Siegman, A. E.

Sridharan, A. K.

Standish, R. J.

Stappaerts, E. A.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Sudesh, V.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Tünnermann, A.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

van Wonderen, A. J.

Ward, B.

Webb, A. S.

Winful, H. G.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Wirth, C.

Wu, P.

Wu, T. W.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Xia, N.

Yoo, S.

Zhao, B.

Zhao, W.

Zheng, J.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Electron. Lett. (1)

C. D. Hussey and F. Martinez, “Approximate Analytic Forms for the Propagation Characteristic of Single-Mode optical Fibers,” Electron. Lett. 21(23), 1103–1104 (1985).
[Crossref]

IEEE J. Quantum Electron. (3)

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
[Crossref]

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Opt. Commun. (2)

H. S. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, “The influence of gain on stimulated Brillouin scattering in an active medium,” Opt. Commun. 167(1), 165–170 (1999).

H. Mohapatra, D. Ghosh, S. I. Hosain, and P. Pattojoshi, “Bend loss calculation in single-mode graded-index fibers using variational fields,” Opt. Commun. 285(24), 5151–5156 (2012).
[Crossref]

Opt. Express (7)

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

N. Xia and S. Yoo, “Mode instability in ytterbium-doped non-circular fibers,” Opt. Express 25(12), 13230–13251 (2017).
[Crossref] [PubMed]

F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Dong, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

H. S. Kim and M. C. Richardson, “Output characteristic of a gain guided, index anti-guided fiber amplifier under the condition of gain saturation,” Opt. Express 17(18), 15969–15974 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Other (6)

G. P. Agrawal, Nonlinear fiber optics, (Academic, San Diego, 2001), Chap.6.

C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jacobson, and K. Tankala, “Effective single-mode chirally-coupled core fiber, ” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.

W. Koechner and M. Bass, Solid-States (Springer-Verlag, 2003), Chap.2. & Chap.4.

A. Yariv, Quantum Electronics 3rd ed., (John Wiley & Sons, USA, 1989), Chap. 6.

A. E. Siegman, Laser (Oxford University Press, 1986), Chap.8.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, USA, 1991), Chap.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Hybrid-index distribution of the proposed fiber: r0 represents a core radius, n0 cladding refractive index, n1 core peak index, and n2 the maximum depressed index in the core
Fig. 2
Fig. 2 Gaussian beam propagation through a proposed fiber and a step index GG + IAG fiber with 50-μm core radius (a) and 100-μm core radius (b).
Fig. 3
Fig. 3 Gaussian beam propagation through a graded-index fiber.
Fig. 4
Fig. 4 Gaussian beam amplification through a graded-index fiber when g0 = 3/cm and the incident beam power of 10 mW.
Fig. 5
Fig. 5 Gaussian beam amplification through the proposed fiber when g0 = 3/cm with an incident beam power (Pin) of 10 mW.
Fig. 6
Fig. 6 Amplified intensities at the fiber axis for the proposed fiber and the GG + IAG fiber when g0 = 3/cm. Symbols represent numerical results, and lines are obtained from Eq. (5).
Fig. 7
Fig. 7 Amplified intensities on the proposed fiber axis for the fiber when the fiber core radius is 50 μm, g0 = 1/cm.
Fig. 8
Fig. 8 Amplified intensities on the proposed fiber axis for the several beam radius when the γ does not support collimation condition.
Fig. 9
Fig. 9 Amplified output beam profiles for the proposed fiber under the condition of Fig. 8.
Fig. 10
Fig. 10 Amplified output power for the proposed fiber when the fiber core radius is 50 µm rL = 10 μm. (a) when Isat = 1.4 × 104 W/cm2 for Nd-doped glass and (b) when Isat = 2.0 × 104 W/cm2 for Yb-doped glass

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n(r)= n 1 ( 1 γ 2 ( r r 0 ) α ),
γ ( λ 0 π n 0 r L ) 2 ( r 0 r L ) α ,
α m = ( u m 2π ) 2 λ 0 2 r 0 3 n 0 2 + n 2 2 n 2 3 n 0 2 n 2 2 ,
E z =j 1 2 k 1 2 Ej( k (r) 2 k 1 2 ) 1 2 k 1 E+ g 0 E 2(1+I(r)/ I s ) ,
dP(z) dz =( π r L 2 2 ) g 0 I sat ln[ 1+ 2P(z) π r L 2 I sat ] α 0 P(z),
l r 0 π γ .

Metrics