Abstract

Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and “twilighting”. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s

Giulia Acconcia, Ivan Rech, Angelo Gulinatti, and Massimo Ghioni
Opt. Express 24(16) 17819-17831 (2016)

Avalanche photodiodes and quenching circuits for single-photon detection

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa
Appl. Opt. 35(12) 1956-1976 (1996)

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
    [Crossref]
  2. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
    [Crossref] [PubMed]
  3. L. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64(6), 1524–1529 (1993).
    [Crossref]
  4. M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode,” J. Lightwave Technol. 31(23), 3591–3596 (2013).
    [Crossref]
  5. A. C. Giudice, M. Ghioni, and S. Cova, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” European Solid-State Device Research, 2003. ESSDERC 03. 33rd Conference on 16–18 Sept. 2003, pp. 347–350.
    [Crossref]
  6. PerkinElmer, “SPCM-AQRH Single photon counting module,” Version 600092_03 DTS0807, published Aug. 2007.
  7. PDM series datasheet: http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf , last accessed 03/15/2016.
  8. SAP500 datasheet: https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lcd/sap-series.pdf , last accessed 03/15/2016.
  9. M. Stipčević, “A novel active quenching circuit for single photon detection with Geiger mode avalanche photodiodes,” Appl. Opt. 48(9), 1705–1714 (2009).
    [Crossref] [PubMed]
  10. I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
    [Crossref]
  11. Philips/NXP datasheet, http://www.nxp.com/documents/data_sheet/74HC_HCT221_CNV.pdf , last accessed 03/15/2016.
  12. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
    [Crossref]
  13. M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
    [Crossref]
  14. M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
    [Crossref]
  15. D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.
  16. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
    [Crossref]
  17. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  18. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).
  19. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).
  20. M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5(1), 10214 (2015).
    [Crossref] [PubMed]
  21. M. Stipčević and D. J. Gauthier, “Precise Monte Carlo Simulation of Single-Photon Detectors,” in Advanced Photon Counting Techniques VII, Proc. SPIE Defense, Security and Sensing, Advanced Photon Counting Techniques VII, M.A. Itzler and J.C. Campbell, Eds. 8727, 87270K (2013).
    [Crossref]

2015 (2)

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5(1), 10214 (2015).
[Crossref] [PubMed]

2014 (1)

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

2013 (1)

2012 (2)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
[Crossref]

M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

2004 (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2000 (1)

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

1997 (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

1993 (1)

L. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64(6), 1524–1529 (1993).
[Crossref]

Barnet, S. M.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Bienfang, J.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Bienfang, J. C.

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
[Crossref]

Bigelow, N. P.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Brougham, T.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Christensen, B.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Cova, S.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Davis, L. M.

L. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64(6), 1524–1529 (1993).
[Crossref]

Eberly, J. H.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Englund, D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Entwistle, M.

M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
[Crossref]

Gauthier, D. J.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Gerrits, T.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Ghioni, M.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

Guilbert, H.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Guinnard, L.

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

Guinnard, O.

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

Horansky, R. D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Itzler, M. A.

M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
[Crossref]

Jiang, X.

M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
[Crossref]

Kumor, D.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Kwiat, P. G.

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Labanca, I.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

Lee, C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Li, L.

L. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64(6), 1524–1529 (1993).
[Crossref]

Lita, A. E.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Marsili, F.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
[Crossref]

S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
[Crossref] [PubMed]

Mirin, R.P.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Nam, S.W.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Polyakov, S. V.

Rech, I.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Restelli, A.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Shapiro, J.H.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Shaw, M.D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Stefanov, A.

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

Stipcevic, M.

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5(1), 10214 (2015).
[Crossref] [PubMed]

M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode,” J. Lightwave Technol. 31(23), 3591–3596 (2013).
[Crossref]

M. Stipčević, “A novel active quenching circuit for single photon detection with Geiger mode avalanche photodiodes,” Appl. Opt. 48(9), 1705–1714 (2009).
[Crossref] [PubMed]

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Stroud, C. R.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Ursin, R.

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5(1), 10214 (2015).
[Crossref] [PubMed]

M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode,” J. Lightwave Technol. 31(23), 3591–3596 (2013).
[Crossref]

Verma, V. B.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Wang, D.

Wang, L.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Wayne, M. A.

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

Wildfeuer, C. F.

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Wong, F.N.C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Wornell, G.W.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Zappa, F.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

Zhang, Z.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Zhong, T.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Zhou, H.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Appl. Opt. (1)

J. Lightwave Technol. (2)

M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode,” J. Lightwave Technol. 31(23), 3591–3596 (2013).
[Crossref]

M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse reduction through prompt quenching in silicon reach-through single-photon avalanche diodes,” J. Lightwave Technol. 32(21), 4097–4103 (2014).
[Crossref]

J. Mod. Opt. (5)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt. 59(17), 1465–1471 (2012).
[Crossref]

M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal dependence of InGaAs/InP SsPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–1480 (2012).
[Crossref]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

New J. Phys. (1)

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, and F.N.C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(022002), 1–10 (2015).

Opt. Express (1)

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rev. Sci. Instrum. (2)

L. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64(6), 1524–1529 (1993).
[Crossref]

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

Sci. Rep. (1)

M. Stipčević and R. Ursin, “An on-demand optical quantum random number generator with in-future action and ultra-fast response,” Sci. Rep. 5(1), 10214 (2015).
[Crossref] [PubMed]

Other (7)

M. Stipčević and D. J. Gauthier, “Precise Monte Carlo Simulation of Single-Photon Detectors,” in Advanced Photon Counting Techniques VII, Proc. SPIE Defense, Security and Sensing, Advanced Photon Counting Techniques VII, M.A. Itzler and J.C. Campbell, Eds. 8727, 87270K (2013).
[Crossref]

D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, and S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States,” in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10)N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234–239.

Philips/NXP datasheet, http://www.nxp.com/documents/data_sheet/74HC_HCT221_CNV.pdf , last accessed 03/15/2016.

A. C. Giudice, M. Ghioni, and S. Cova, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” European Solid-State Device Research, 2003. ESSDERC 03. 33rd Conference on 16–18 Sept. 2003, pp. 347–350.
[Crossref]

PerkinElmer, “SPCM-AQRH Single photon counting module,” Version 600092_03 DTS0807, published Aug. 2007.

PDM series datasheet: http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf , last accessed 03/15/2016.

SAP500 datasheet: https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lcd/sap-series.pdf , last accessed 03/15/2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Typical temporal evolution of the voltage across a SPAD during an active avalanche quenching event. Here, the bias voltage across SPAD during a quenching sequence is shown in blue, τ trap is the interval during which deep states (traps) are filled, τ quench is the interval during which the SPAD is biased below the Geiger threshold, τ twilight is the interval during which SPAD is (partially) sensitive to single photons but the electronic circuit amplifying stage is shut down, τ RC is the propagation delay of the quenching stage, τ dead is the dead time, V OP is the nominal operating voltage of the SPAD, V thr is the pulse discriminating level, and   V BR is the Geiger breakdown voltage of the SPAD.
Fig. 2
Fig. 2 Histogram of time intervals between subsequent electrical pulses recorded from the detector SPCM-AQRH illuminated by a constant-power LED to achieve total count rate of 50 kcps. Histogram bins are 1-ns wide. The data collection time for the 61638 events shown in the histogram is ~3 minutes.
Fig. 3
Fig. 3 Setup for characterizing jitter, detection shift, and twilighting of photon detectors.
Fig. 4
Fig. 4 Histogram of jitter of the SPCM-AQRH detector as a function of the mean detection rate for counting rates of a) 50 kcps, b) 300 kcps, c) 1.5 Mcps, and d) 4.0 Mcps. The delay between photon emission and detection is on the abscissa, while the number of events is on the ordinate. The inset table lists the detection rate ( f DET ), peak photon detection time ( peak), and jitter (FWHM) obtained by a Gaussian fit.
Fig. 5
Fig. 5 Twilighting effect in the a) SPCM-AQRH and b) SPD-050 (TTL output and Timing output) detectors. The detection efficiency of the second photon in a pair, relative to the efficiency of the first photon (when the first photon is detected) as a function of the delay between the two photons. The dead times of a) 29.1 ns and b) 78.0 ns for TTL output and 74.5 ns for Timing output are indicated by the vertical lines.
Fig. 6
Fig. 6 a) Time shift between the true and measured photon arrival time for the second photon in a pair (if both photons have been detected), as a function of the time interval between the two incoming photons. b) Time resolution (jitter) FWHM of the second photon in a pair if both photons have been detected. Dotted lines mark respective dead times.
Fig. 7
Fig. 7 Illustration of the cross section of the SPAD SAP500, manufactured by Laser Components GmbH. The active area is 0.5 mm in diameter (not drawn proportionally). The photon conversion region is situated between the p+ layer and p+ region, and is typically 25 μm thick. The bottom and the contact part of the top side are covered by metalized layers whose purpose is to enhance containment of a photon and thus its conversion to a free carrier.
Fig. 8
Fig. 8 a) Schematic diagram of the improved avalanche quenching circuit. COMP is a fast comparator AD8611 (Analog Devices). b) Timing diagram of the photon-detection cycle of the avalanche quenching circuit.
Fig. 9
Fig. 9 Waveform of a quench pulse at point A (blue curve) and of the output pulse (black) (color online).
Fig. 10
Fig. 10 a) The cumulative output of a single-photon detector module illuminated by Poissonian light from a light emitting diode (LED) attenuated to yield approximately 50,000 counts per second on average. The 24-ns dead time is defined as the minimum time delay between the trigger event on the left and the next pulse. b) Twilighting. The dead time of 24 ns is indicated by the vertical dashed line.
Fig. 11
Fig. 11 a) Histogram of jitter timing of our custom-made detector as a function of the mean detection rate, when illuminated with laser pulses at repetition rate with ΔT=30 ns. The delay between photon emission and its detection is on the abscissa, while the number of events is on the ordinate. The inset table relates detection rate ( f DET ), peak photon detection time ( peak), and jitter (FWHM) obtained by a Gaussian fit. b) detection time shift, and c) jitter, for the custom-built detector. The dead time of 24 ns is indicated by the vertical dashed lines. Axes spans of the plots b) and c) are the same as in Fig. 6(b) and Fig. 6(c) respectively, for easier comparison.
Fig. 12
Fig. 12 Experimental setup for our QKD system for one spatial mode. The non-polarizing beam splitter (NPBS) in Alice and Bob’s setup randomly direct the photonic states to either the Horizontal (H)/Vertical (V) basis or the Diagonal (D)/Anti-Diagonal (A) polarization basis, where single photons are detected and their arrival times recorded.
Fig. 13
Fig. 13 Autocorrelation plots for the a) SPCM-AQRH detector and b) for the custom-made detector. These plots are made using a pump repetition rate of 1.92 GHz, where we can still distinguish the pulses with both detectors. However, the poorer jitter of the SPCM clearly broadens the autocorrelation function.
Fig. 14
Fig. 14 Comparison of various performance metrics of the custom-made and commercial detectors. a) pulse distinguishability as a function of laser pulse repetition rate, where the detection rate is fixed to 4 Mcps by adjusting the detector-beam coupling, b) heralding efficiency, as a function of the detector count rate, for a fixed laser pulse rate of 1.92 GHz, and c) cross-correlation plot for a fixed laser pulse rate of 0.96 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T twilight = T DLY1 T Q =5.5 ns 
T quench = T DLY1 + T COMP =10.5 ns 
τ dead =2( T DLY1 + T COMP ) T Q =21.5 ns. 
R=M η 2 ( nξ δt ), 

Metrics