Abstract

By using a seven-core fiber (SCF), we propose and demonstrate a novel segmented detection SPR sensor, which solves two bottlenecks about the fiber SPR sensor of low sensitivity and the difficulty in the multichannel detection. The proposed sensor has ultra high sensitivity and wide detection range because of employing the segmented detection technology. Besides that, the proposed sensor employs reflection-type time division multiplexing (TDM) technology in fiber multichannel detection for the first time. We couple light into and out of the six circularly symmetric distributed cores of the seven-core fiber to realize the three channel SPR sensing and testing. This three-channel SPR sensor has the advantages of detecting biochemical or multi analytes reactions and eliminating the distractions due to temperature fluctuations or sample composition variations and adsorption of non-target molecules to the sensor surface. This SPR sensor also has the advantages of online monitoring by inserting into the blood vessel because of its small size. Furthermore, this paper has deeply researched the relationship between the refractive index of the solution to be measured, the grinding angle of the sensing channel, the sensitivity and the detection range. In this paper, we propose a novel segmented detection method which realizes the wide detection range with the wider refractive index range of 1.333~1.395 and the narrower working bandwidth of 250nm compared with the common SPR sensor, the average sensitivity and the maximum sensitivity of the sensor reach 7387.1nm/RIU and 8502.5nm/RIU respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact distributed fiber SPR sensor based on TDM and WDM technology

Zhihai Liu, Yong Wei, Yu Zhang, Chunlan Liu, Yaxun Zhang, Enming Zhao, Jun Yang, and Libo Yuan
Opt. Express 23(18) 24004-24012 (2015)

Twin-core fiber SPR sensor

Zhihai Liu, Yong Wei, Yu Zhang, Yaxun Zhang, Enming Zhao, Jun Yang, and Libo Yuan
Opt. Lett. 40(12) 2826-2829 (2015)

Dual-truncated-cone structure for quasi-distributed multichannel fiber surface plasmon resonance sensor

Zhihai Liu, Zongda Zhu, Lu Liu, Yu Zhang, Yong Wei, Yushan Wang, Yaxun Zhang, Enming Zhao, Xinghua Yang, Jun Yang, and Libo Yuan
Opt. Lett. 41(18) 4320-4323 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Peng, Y. Liu, P. Fang, X. Liu, Z. Gong, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 22(5), 6174–6185 (2014).
    [Crossref] [PubMed]
  2. K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
    [PubMed]
  3. D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
    [Crossref] [PubMed]
  4. X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  5. J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
    [Crossref] [PubMed]
  6. P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
    [Crossref]
  7. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
    [Crossref] [PubMed]
  8. Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
    [Crossref]
  9. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  10. Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
    [Crossref]
  11. B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
    [Crossref]
  12. M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” Opt. Lett. 40(1), 115–118 (2015).
    [Crossref] [PubMed]
  13. Z. Liu, Y. Wei, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, “Twin-core fiber SPR sensor,” Opt. Lett. 40(12), 2826–2829 (2015).
    [Crossref] [PubMed]
  14. Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
    [Crossref]
  15. Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
    [Crossref]
  16. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuarors B. 12(3), 213–220 (1993).
    [Crossref]
  17. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2017 (1)

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

2015 (3)

2014 (2)

W. Peng, Y. Liu, P. Fang, X. Liu, Z. Gong, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 22(5), 6174–6185 (2014).
[Crossref] [PubMed]

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

2013 (2)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

2012 (1)

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
[Crossref]

2009 (1)

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

2007 (1)

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

2006 (1)

P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
[Crossref]

2005 (3)

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuarors B. 12(3), 213–220 (1993).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adam, P.

P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
[Crossref]

Baiad, M. D.

Banerji, S.

Booksh, K. S.

Chen, D.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Cheng, F.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuai, Z.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Dostálek, J.

P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Fang, P.

Fu, W.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Fujimaki, M.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Fukuda, N.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Gong, Z.

Gopinath, S. C. B.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Homola, J.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Huang, J.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
[Crossref]

Huang, Q.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuarors B. 12(3), 213–220 (1993).
[Crossref]

Kashyap, R.

Kim, Y. C.

Kvasnicka, P.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

Lakshmipriya, T.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Liu, C. L.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Liu, X.

Liu, Y.

Liu, Z.

Liu, Z. H.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Luo, Y. X.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Nie, X. F.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Nomura, K.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Peng, F.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Peng, J.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Peng, W.

Piliarik, M.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Rajarajan, M.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

Shi, D.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Špacková, B.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

Sun, B.

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Sun, F. G.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Themistos, C.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

Vaisocherová, H.

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Wang, H.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

W. Peng, Y. Liu, P. Fang, X. Liu, Z. Gong, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 22(5), 6174–6185 (2014).
[Crossref] [PubMed]

Wang, L.

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
[Crossref]

Wang, X.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wei, Y.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Z. Liu, Y. Wei, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, “Twin-core fiber SPR sensor,” Opt. Lett. 40(12), 2826–2829 (2015).
[Crossref] [PubMed]

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wu, H.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Wu, Y. M.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Xiao, G. Z.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Yang, J.

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Z. Liu, Y. Wei, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, “Twin-core fiber SPR sensor,” Opt. Lett. 40(12), 2826–2829 (2015).
[Crossref] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuarors B. 12(3), 213–220 (1993).
[Crossref]

Yuan, L.

Yuan, L. B.

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Yuan, Y. Q.

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
[Crossref]

Zhang, Y.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Z. Liu, Y. Wei, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, “Twin-core fiber SPR sensor,” Opt. Lett. 40(12), 2826–2829 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Wei, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, “Twin-core fiber SPR sensor,” Opt. Lett. 40(12), 2826–2829 (2015).
[Crossref] [PubMed]

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Zhang, Y. H.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Zhang, Y. X.

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Zhao, E.

Zhao, E. M.

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

Zhao, P.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Zhou, Z. M.

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Zhu, X.

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

D. Shi, J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu, “Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor,” Biosens. Bioelectron. 62(20), 280–287 (2014).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Methods (1)

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4(1), 2855 (2013).
[PubMed]

Opt. Commun. (1)

Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, Y. Zhang, F. Peng, and Z. M. Zhou, “Multi-channel SPR sensor based on the cascade application of the Singlemode and multimode optical fiber,” Opt. Commun. 390, 82–87 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sens. Actuarors B. (5)

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sens. Actuarors B. 161(1), 269–273 (2012).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuarors B. 12(3), 213–220 (1993).
[Crossref]

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuarors B. 139(1), 199–203 (2009).
[Crossref]

Z. H. Liu, Y. Wei, Y. Zhang, B. Sun, E. M. Zhao, Y. X. Zhang, J. Yang, and L. B. Yuan, “A novel surface plasmon resonance sensor based on fiber butt-joint technology,” Sens. Actuarors B. 221, 1330–1334 (2015).
[Crossref]

P. Adam, J. Dostálek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuarors B. 113(2), 774–781 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Profile image of the seven-core fiber with serial numbers (0~6#); (b) profile image of the seven-core fiber; (c) image of the sensor probe tip with the gold film coating; (d) sketch diagram of the sensor probe grinding angles(10°, 12.5° and 15°), where SGF means sensing gold film with the thickness of 50nm, RGF means reflecting gold film with the thickness of 300nm.

Fig. 2
Fig. 2

Profile images of the seven-core fiber with the (a)No.1#; (b) No.4#; (c) No.6#; (d) No.3#; (e) No.5#; (f) No.2# core being grinded off recorded by the fiber grinding machine. The serial number is referenced from the Fig. 1.(a).

Fig. 3
Fig. 3

(a) The experiment setup sketch diagram of the three channel fiber SPR sensor; (b) sketch diagram of the beam lens transform system, where SMF means single mode fiber, SCF means seven-core fiber, ST means swivel table.

Fig. 4
Fig. 4

Simulated and calculated results of the SPR spectrum with the SPR resonance angle of (a) 80°, (b) 77.5° and (c) 75°, (d) relation between the fiber grinding angle and the testing dynamic range. Where SIM means the simulation results, S means the instantaneous sensitivity, AS means the average sensitivity.

Fig. 5
Fig. 5

(a) Testing results of the SPR spectrum with channel I working; (b) testing results of the SPR spectrum with channel II working; (c) testing results of the SPR spectrum with channel III working; (d) relation between the refractive index and the resonance wavelength. Where TES means the testing results, S means the instantaneous sensitivity, AS means the average sensitivity.

Fig. 6
Fig. 6

For the different grinding angle, the relation between the refractive index and the instantaneous sensitivity.

Fig. 7
Fig. 7

(a) Testing results of the SPR spectrum with channel I working; (b) testing results of the SPR spectrum with channel II working; (c) testing results of the SPR spectrum with channel III working; (d) relation between the refractive index and the resonance wavelength. Here TES means the testing results, SIM means the simulating results, S means the instantaneous sensitivity, AS means the average sensitivity.

Tables (1)

Tables Icon

Table 1 The Simulated and calculated results of the resonance wavelength with different refractive index of the solution to be measured

Metrics