Abstract

We present an optical setup capable of mirroring an arbitrary, potentially time-varying, polarization state of an ultrashort laser pulse. The incident beam is split up in two and the polarization of one beam is mirrored by reflection off a mirror in normal incidence. Afterwards, both beams are recombined in time and space such that two collinear ultrashort laser pulses with mutually mirrored polarization, i.e., laser-pulse enantiomers, leave the setup. We employ the Jones formalism to describe the function of the setup and analyze the influence of alignment errors before describing the experimental implementation and alignment protocol. Since no wave plates are utilized, broadband pulses in a large wavelength range can be processed. In particular, we show that the setup outperforms broadband achromatic wave plates. Furthermore, since the two beams travel separately through the optical system they can be blocked independently. This opens the possibility for circular dichroism, ellipsometry, and anisotropy spectroscopy with shot-to-shot chopping and detection schemes as well as chiral coherent control applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy

Biplab Dutta and Jan Helbing
Opt. Express 23(12) 16449-16465 (2015)

Femtosecond polarization pulse shaping

T. Brixner and G. Gerber
Opt. Lett. 26(8) 557-559 (2001)

Characterization of arbitrarily polarized ultrashort laser pulses by cross-phase modulation

Juan José Ferreiro, Raúl de la Fuente, and Elena López-Lago
Opt. Lett. 26(13) 1025-1027 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem (Royal Society of Chemistry, 2008).
  2. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).
    [Crossref]
  3. I. K. Reddy and R. Mehvar, Chirality in Drug Design and Development (CRC Press, 2004).
    [Crossref]
  4. U. Meierhenrich, Amino Acids and the Asymmetry of Life: Caught in the Act of Formation (Springer, 2008).
  5. R. B. Silverman and M. W. Holladay, The Organic Chemistry of Drug Design and Drug Action (Elsevier Academic Press, 2014), 3rd ed.
  6. W. S. Knowles, “Asymmetric hydrogenations (nobel lecture),” Angew. Chem. Int. Ed. 41, 1998–2007 (2002).
    [Crossref]
  7. R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
    [Crossref]
  8. O. Golonzka and A. Tokmakoff, “Polarization-selective third-order spectroscopy of coupled vibronic states,” J. Chem. Phys 115, 297–309 (2001).
    [Crossref]
  9. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [Crossref] [PubMed]
  10. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
    [Crossref] [PubMed]
  11. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
    [Crossref]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
    [Crossref] [PubMed]
  13. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [Crossref] [PubMed]
  14. D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
    [Crossref]
  15. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  16. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [Crossref]
  17. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
    [Crossref]
  18. L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
    [Crossref] [PubMed]
  19. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
    [Crossref] [PubMed]
  20. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
    [Crossref] [PubMed]
  21. C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer SLM in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
    [Crossref]
  22. T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
    [Crossref]
  23. C.-C. Chen and S.-D. Yang, “All-optical self-referencing measurement of vectorial optical arbitrary waveform,” Opt. Express 22, 28838–28844 (2014).
    [Crossref] [PubMed]
  24. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22, 16965–16975 (2014).
    [Crossref] [PubMed]
  25. J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
    [Crossref]
  26. K. W. Hipps and G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
    [Crossref]
  27. X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
    [Crossref]
  28. H. Poincaré, Theorie Mathematique de la Lumiere, vol. 2 (Gauthiers-Villars, 1892).
  29. E. Hecht, Optics (Addison Wesley, 2002), 4th ed.
  30. E. J. Galvez, “Achromatic polarization-preserving beam displacer,” Opt. Lett. 26, 971–973 (2001).
    [Crossref]
  31. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.
    [Crossref]
  32. M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in “Springer Handbook of Lasers and Optics,” F. Träger, ed. (Springer Science+Business Media, 2007), pp. 937–983.
    [Crossref]
  33. A. L. Fymat, “Jones’s matrix representation of optical instruments. I: Beam splitters,” Appl. Opt. 10, 2499–2505 (1971).
    [Crossref] [PubMed]
  34. I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  36. Sony Corporation, “ICX098BQ datasheet,” (2016).
  37. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006), 2nd ed.
    [Crossref]
  38. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
    [Crossref]
  39. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.
    [Crossref]
  40. N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010), 1st ed.
  41. P. J. Walla, ed., Modern Biophysical Chemistry: Detection and Analysis of Biomolecules (Wiley-VCH Verlag GmbH & Co. KGaA, 2014).
  42. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1988), 3rd ed.
  43. S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
    [Crossref] [PubMed]
  44. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
    [Crossref]
  45. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
    [Crossref]
  46. J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
    [Crossref]
  47. L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
    [Crossref] [PubMed]
  48. K. Hiramatsu and T. Nagata, “Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
    [Crossref] [PubMed]
  49. J. Shao and P. Hänggi, “Control of molecular chirality,” J. Chem. Phys. 107, 9935–9941 (1997).
    [Crossref]
  50. Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
    [Crossref]
  51. M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
    [Crossref] [PubMed]
  52. S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
    [Crossref]
  53. K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
    [Crossref]
  54. D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
    [Crossref]
  55. D. Gerbasi, M. Shapiro, and P. Brumer, “Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment,” J. Chem. Phys. 124, 074315 (2006).
    [Crossref]
  56. D. V. Zhdanov and V. N. Zadkov, “Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection,” J. Chem. Phys. 127, 244312 (2007).
    [Crossref]
  57. S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
    [Crossref]
  58. S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
    [Crossref]
  59. E. F. Thomas and N. E. Henriksen, “Phase-modulated nonresonant laser pulses can selectively convert enantiomers in a racemic mixture,” J. Phys. Chem. Lett. 8, 2212–2219 (2017).
    [Crossref] [PubMed]

2017 (1)

E. F. Thomas and N. E. Henriksen, “Phase-modulated nonresonant laser pulses can selectively convert enantiomers in a racemic mixture,” J. Phys. Chem. Lett. 8, 2212–2219 (2017).
[Crossref] [PubMed]

2015 (4)

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer SLM in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
[Crossref]

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

K. Hiramatsu and T. Nagata, “Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

2012 (2)

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[Crossref]

S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
[Crossref]

2011 (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

2009 (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
[Crossref]

2007 (3)

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[Crossref] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

D. V. Zhdanov and V. N. Zadkov, “Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection,” J. Chem. Phys. 127, 244312 (2007).
[Crossref]

2006 (4)

2005 (1)

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

2004 (3)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref] [PubMed]

2003 (3)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
[Crossref]

D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
[Crossref]

2002 (3)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

W. S. Knowles, “Asymmetric hydrogenations (nobel lecture),” Angew. Chem. Int. Ed. 41, 1998–2007 (2002).
[Crossref]

K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
[Crossref]

2001 (5)

S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
[Crossref]

E. J. Galvez, “Achromatic polarization-preserving beam displacer,” Opt. Lett. 26, 971–973 (2001).
[Crossref]

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

O. Golonzka and A. Tokmakoff, “Polarization-selective third-order spectroscopy of coupled vibronic states,” J. Chem. Phys 115, 297–309 (2001).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

2000 (1)

M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
[Crossref] [PubMed]

1999 (1)

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

1997 (1)

J. Shao and P. Hänggi, “Control of molecular chirality,” J. Chem. Phys. 107, 9935–9941 (1997).
[Crossref]

1988 (1)

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

1985 (1)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

1979 (1)

K. W. Hipps and G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[Crossref]

1977 (1)

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1971 (1)

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Akimov, D.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[Crossref]

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006), 2nd ed.
[Crossref]

Assion, A.

M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in “Springer Handbook of Lasers and Optics,” F. Träger, ed. (Springer Science+Business Media, 2007), pp. 937–983.
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1988), 3rd ed.

Badoz, J.

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).
[Crossref]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1988), 3rd ed.

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
[Crossref]

Baumert, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in “Springer Handbook of Lasers and Optics,” F. Träger, ed. (Springer Science+Business Media, 2007), pp. 937–983.
[Crossref]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Billardon, M.

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

Bjorling, S. C.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.
[Crossref]

Boscain, U.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
[Crossref]

Brixner, T.

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer SLM in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
[Crossref]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22, 16965–16975 (2014).
[Crossref] [PubMed]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[Crossref] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

Bronstein, I. N.

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.

Brumer, P.

D. Gerbasi, M. Shapiro, and P. Brumer, “Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment,” J. Chem. Phys. 124, 074315 (2006).
[Crossref]

M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
[Crossref] [PubMed]

Bychkov, S. S.

S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
[Crossref]

Calarco, T.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Canit, J. C.

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

Changenet-Barret, P.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Chen, C.-C.

Chosrowjan, H.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Crosby, G. A.

K. W. Hipps and G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[Crossref]

Damrauer, N. H.

Dietzek, B.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[Crossref]

Dudovich, N.

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

Eck, R.

Einterz, C. M.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Feurer, T.

Frishman, E.

M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
[Crossref] [PubMed]

Fujimura, Y.

K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
[Crossref]

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

Fymat, A. L.

Galler, A.

Galvez, E. J.

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Gerbasi, D.

D. Gerbasi, M. Shapiro, and P. Brumer, “Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment,” J. Chem. Phys. 124, 074315 (2006).
[Crossref]

Gerber, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

Glaser, S. J.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Golonzka, O.

O. Golonzka and A. Tokmakoff, “Polarization-selective third-order spectroscopy of coupled vibronic states,” J. Chem. Phys 115, 297–309 (2001).
[Crossref]

González, L.

D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
[Crossref]

K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
[Crossref]

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

Graefe, O.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Grishanin, B. A.

S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
[Crossref]

Guijarro, A.

A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem (Royal Society of Chemistry, 2008).

Hache, F.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
[Crossref]

Hänggi, P.

J. Shao and P. Hänggi, “Control of molecular chirality,” J. Chem. Phys. 107, 9935–9941 (1997).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002), 4th ed.

Henriksen, N. E.

E. F. Thomas and N. E. Henriksen, “Phase-modulated nonresonant laser pulses can selectively convert enantiomers in a racemic mixture,” J. Phys. Chem. Lett. 8, 2212–2219 (2017).
[Crossref] [PubMed]

Hipps, K. W.

K. W. Hipps and G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[Crossref]

Hiramatsu, K.

K. Hiramatsu and T. Nagata, “Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref] [PubMed]

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

Hoki, K.

K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
[Crossref]

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

Holladay, M. W.

R. B. Silverman and M. W. Holladay, The Organic Chemistry of Drug Design and Drug Action (Elsevier Academic Press, 2014), 3rd ed.

Horn, C.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Huang, X.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

Hüter, O.

Imamoto, Y.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kanai, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Kanal, F.

Keiber, S.

Kliger, D. S.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Knowles, W. S.

W. S. Knowles, “Asymmetric hydrogenations (nobel lecture),” Angew. Chem. Int. Ed. 41, 1998–2007 (2002).
[Crossref]

Koch, C. P.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Köckenberger, W.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Kosloff, R.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Krampert, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

Kröner, D.

D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
[Crossref]

Kuntz, I. D.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Kuprov, I.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.
[Crossref]

Lewis, J. W.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Liese, D.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Lindinger, A.

Luy, B.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Manz, J.

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

Mehvar, R.

I. K. Reddy and R. Mehvar, Chirality in Drug Design and Development (CRC Press, 2004).
[Crossref]

Meierhenrich, U.

U. Meierhenrich, Amino Acids and the Asymmetry of Life: Caught in the Act of Formation (Springer, 2008).

Mendonça, L.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Meyer-Ilse, J.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[Crossref]

Milder, S. J.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Minemoto, S.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Muehlig, H.

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.

Musiol, G.

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.

Nagata, T.

K. Hiramatsu and T. Nagata, “Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref] [PubMed]

Niezborala, C.

Niklaus, P.

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

Ninck, M.

Ohtsuki, Y.

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

Oron, D.

L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
[Crossref] [PubMed]

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

Parker, S. M.

S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
[Crossref]

Pfeifer, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Plaza, P.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Plewicki, M.

Poincaré, H.

H. Poincaré, Theorie Mathematique de la Lumiere, vol. 2 (Gauthiers-Villars, 1892).

Polachek, L.

Ramamurthy, V.

N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010), 1st ed.

Ratner, M. A.

S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
[Crossref]

Reddy, I. K.

I. K. Reddy and R. Mehvar, Chirality in Drug Design and Development (CRC Press, 2004).
[Crossref]

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
[Crossref]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Russel, M. F.

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

Sakai, H.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Scaiano, J. C.

N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010), 1st ed.

Schirmer, S.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Schulte-Herbrüggen, T.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Schwarz, C.

Seideman, T.

S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
[Crossref]

Selle, R.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Semendyayev, K. A.

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.

Shao, J.

J. Shao and P. Hänggi, “Control of molecular chirality,” J. Chem. Phys. 107, 9935–9941 (1997).
[Crossref]

Shapiro, M.

D. Gerbasi, M. Shapiro, and P. Brumer, “Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment,” J. Chem. Phys. 124, 074315 (2006).
[Crossref]

M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
[Crossref] [PubMed]

Shibl, M. F.

D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
[Crossref]

Silberberg, Y.

L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
[Crossref] [PubMed]

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

Silverman, R. B.

R. B. Silverman and M. W. Holladay, The Organic Chemistry of Drug Design and Drug Action (Elsevier Academic Press, 2014), 3rd ed.

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Sugny, D.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Suzuki, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Taniguchi, S.

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

Thomas, E. F.

E. F. Thomas and N. E. Henriksen, “Phase-modulated nonresonant laser pulses can selectively convert enantiomers in a racemic mixture,” J. Phys. Chem. Lett. 8, 2212–2219 (2017).
[Crossref] [PubMed]

Tilton, R. F.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

Tokmakoff, A.

O. Golonzka and A. Tokmakoff, “Polarization-selective third-order spectroscopy of coupled vibronic states,” J. Chem. Phys 115, 297–309 (2001).
[Crossref]

Turro, N. J.

N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010), 1st ed.

Villeneuve, D. M.

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

Weber, S. M.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

Weise, F.

Wilhelm, F. K.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.
[Crossref]

Wollenhaupt, M.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in “Springer Handbook of Lasers and Optics,” F. Träger, ed. (Springer Science+Business Media, 2007), pp. 937–983.
[Crossref]

Xiao, B.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

Yang, D.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

Yang, H.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

Yang, S.-D.

Yus, M.

A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem (Royal Society of Chemistry, 2008).

Zadkov, V. N.

D. V. Zhdanov and V. N. Zadkov, “Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection,” J. Chem. Phys. 127, 244312 (2007).
[Crossref]

S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
[Crossref]

Zhdanov, D. V.

D. V. Zhdanov and V. N. Zadkov, “Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection,” J. Chem. Phys. 127, 244312 (2007).
[Crossref]

Angew. Chem. Int. Ed. (1)

W. S. Knowles, “Asymmetric hydrogenations (nobel lecture),” Angew. Chem. Int. Ed. 41, 1998–2007 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97, 561 (2009).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, 133–144 (2002).
[Crossref]

Biophys. J. (1)

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[Crossref] [PubMed]

Chem. Phys. (1)

R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

Chem. Phys. Lett. (2)

Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
[Crossref]

D. Kröner, M. F. Shibl, and L. González, “Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment,” Chem. Phys. Lett. 372, 242–248 (2003).
[Crossref]

Eur. Phys. J. D (1)

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 14637–14643 (2013).
[Crossref] [PubMed]

J. Chem. Phys (1)

O. Golonzka and A. Tokmakoff, “Polarization-selective third-order spectroscopy of coupled vibronic states,” J. Chem. Phys 115, 297–309 (2001).
[Crossref]

J. Chem. Phys. (5)

K. Hiramatsu and T. Nagata, “Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref] [PubMed]

J. Shao and P. Hänggi, “Control of molecular chirality,” J. Chem. Phys. 107, 9935–9941 (1997).
[Crossref]

D. Gerbasi, M. Shapiro, and P. Brumer, “Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment,” J. Chem. Phys. 124, 074315 (2006).
[Crossref]

D. V. Zhdanov and V. N. Zadkov, “Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection,” J. Chem. Phys. 127, 244312 (2007).
[Crossref]

K. Hoki, L. González, and Y. Fujimura, “Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields,” J. Chem. Phys. 116, 8799–8802 (2002).
[Crossref]

J. Exp. Theor. Phys. (1)

S. S. Bychkov, B. A. Grishanin, and V. N. Zadkov, “Laser synthesis of chiral molecules in isotropic racemic media,” J. Exp. Theor. Phys. 93, 24–32 (2001).
[Crossref]

J. Opt. (1)

J. Badoz, M. Billardon, J. C. Canit, and M. F. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Opt. 8, 373 (1977).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (2)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[Crossref]

K. W. Hipps and G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[Crossref]

J. Phys. Chem. Lett. (2)

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-Dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[Crossref]

E. F. Thomas and N. E. Henriksen, “Phase-modulated nonresonant laser pulses can selectively convert enantiomers in a racemic mixture,” J. Phys. Chem. Lett. 8, 2212–2219 (2017).
[Crossref] [PubMed]

Mol. Phys. (1)

S. M. Parker, M. A. Ratner, and T. Seideman, “Simulating strong field control of axial chirality using optimal control theory,” Mol. Phys. 110, 1941–1952 (2012).
[Crossref]

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optics Comm. (1)

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Optics Comm. 338, 416–421 (2015).
[Crossref]

Phys. Rev. A (1)

D. Oron, Y. Silberberg, N. Dudovich, and D. M. Villeneuve, “Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses,” Phys. Rev. A 72, 063816 (2005).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (5)

M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669 (2000).
[Crossref] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-stokes raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref] [PubMed]

Other (16)

A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem (Royal Society of Chemistry, 2008).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).
[Crossref]

I. K. Reddy and R. Mehvar, Chirality in Drug Design and Development (CRC Press, 2004).
[Crossref]

U. Meierhenrich, Amino Acids and the Asymmetry of Life: Caught in the Act of Formation (Springer, 2008).

R. B. Silverman and M. W. Holladay, The Organic Chemistry of Drug Design and Drug Action (Elsevier Academic Press, 2014), 3rd ed.

H. Poincaré, Theorie Mathematique de la Lumiere, vol. 2 (Gauthiers-Villars, 1892).

E. Hecht, Optics (Addison Wesley, 2002), 4th ed.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.
[Crossref]

M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in “Springer Handbook of Lasers and Optics,” F. Träger, ed. (Springer Science+Business Media, 2007), pp. 937–983.
[Crossref]

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007), 5th ed.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.
[Crossref]

N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010), 1st ed.

P. J. Walla, ed., Modern Biophysical Chemistry: Detection and Analysis of Biomolecules (Wiley-VCH Verlag GmbH & Co. KGaA, 2014).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1988), 3rd ed.

Sony Corporation, “ICX098BQ datasheet,” (2016).

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006), 2nd ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Visualization of the working principle of a normal-incidence mirror for circular polarization. If right-circular polarization (red) is incident on the normal-incidence mirror, the rotation direction of the electric field stays unaltered but the propagation direction changes. This leads to left-circular polarization (green) after reflection. (b) Schematic representation of an ideal rotating periscope. The green arrows show the beam path. As indicated by the red and blue disks, the planes of incidence enclose an angle of 90°. Thus, the s component of the first mirror is the p component of the second and vice versa. The polarization state is rotated by 90° as indicated by the letter ‘F’.

Fig. 2
Fig. 2

Poincaré representation of polarization states. (a) In the 3D representation the azimuth angle is twice the orientation θ and the polar angle is twice the ellipticity ε. (b) The two-dimensional planar projection shows that every polarization state can be described by the ellipticity ε (vertical axis) and orientation θ (horizontal axis). The PE setup performs a point inversion at the origin of the Poincaré plane. Thus, linear polarization (ε = 0) in the horizontal direction (origin, θ = 0) and vertical direction (θ = ±π/2) stay unaltered, while any elliptical polarization (ε ≠ 0) changes helicity after passing the PE setup.

Fig. 3
Fig. 3

Schematic representation of the pulse enantiomer (PE) setup. Basically, the PE setup is an interferometer, built with rotating periscopes [Fig. 1(b)]. Mirrors are framed in black while beam splitters are framed in blue. The utilized coordinate system is visualized at the lower right. The letter ‘F’ visualizes the actual polarization state after every optical element. Hence, as indicated by the red and green letter ‘F’ at the output in the upper right the two outgoing laser pulses exhibit indeed mirrored polarizations.

Fig. 4
Fig. 4

Building blocks of the PE setup. (a) The basic element is a cube consisting of four aluminum parts that are connected with screws (see right-hand side). Within each cube, a different optical element can be mounted, here a silver mirror is shown. For fine adjustment the mirror is mounted in a commercial mirror holder (Radiant Dyes GmbH). The aluminum parts are manufactured such that the mirror surface is located at the intersection of the inner diagonals of the cube. Different cubes can be mounted on each other precisely with the help of the outer threaded holes in combination with eight dowel pins (not shown) at every surface of the cube. (b) Rotating periscope consisting of two aluminum cubes in which the mirrors are mounted.

Fig. 5
Fig. 5

Schematic representation of the utilized setup for the alignment of the cubes. The output of a HeNe laser is guided parallel to an end stop (black, vertical) along the −b direction with the help of two irises, each mounted in the center of a cube (hatched). The actual cube in which the mirror is mounted that should be aligned is shaded gray (middle, bottom). The mirror in that cube can reflect the beam to the right-hand side, i.e., along the a direction as depicted, or to the left-hand side, i.e., the −a direction if the cube is rotated by 90° around the c axis. In both cases the two irises mounted in cubes (hatched) are used for a first coarse alignment such that the beam travels parallel to the horizontal end stops (black, horizontal). For higher accuracy, we remove the iris cubes and utilize a 2D CCD camera. Rotating the cube under investigation by 180° around its depicted symmetry axis (dashed line through its center) and determining the beam position on the camera in +a direction for both orientations, we can check the alignment with sub-µm precision.

Fig. 6
Fig. 6

Schematic representation of the final assembly of the PE setup. The first and last beamsplitter are depicted in yellow. All other cubes in which the beams travel are colored in red or green, using the same color code as for the beams in Fig. 3. Additional cubes are depicted in gray. The extensive use of aluminum cubes (19 in total) does not only give rise to easy yet high-accuracy assembly, but also leads to a very robust design of the PE setup.

Fig. 7
Fig. 7

Schematic representation of the optical setup for characterization of the PE setup. Femtosecond laser pulses at 800 nm are used to generate a white-light supercontinuum in a linearly moving CaF2 plate. After recollimation via a reflective Schiefspiegler telescope, the beam is passed through a linear polarizer (LP) and subsequently (a) retarder(s) (RET) to alter the polarization state of the incident beam. After leaving the PE setup, the two collinear beams pass another LP in a computer-controlled rotation mount before they are detected via the spectrometer.

Fig. 8
Fig. 8

Comparison of the mirroring performance of (a) the PE setup with (b) an achromatic half-wave plate for linear polarization at 550 nm. The characterized original, incident polarization states are marked by ‘+’ in the Poincaré plane. The corresponding perfectly mirrored polarization states are denoted with dashed ellipses, while the actual measured polarizations are marked by ‘×’. Each color represents a different setting of the HWP, i.e., a different incident polarization.

Fig. 9
Fig. 9

Mirroring capability of the PE setup for elliptical polarization states. (a) The original, incident polarization states at 550 nm are marked by ‘+’ in the Poincaré plane. The corresponding perfectly mirrored polarization states are denoted with dashed ellipses, while the actual measured polarizations are marked by ‘×’. (b) For the red data point in (a), the wavelength-resolved polarization characterization is presented. The incident polarization is shown in solid lines, while the mirrored polarization state is represented with dashed lines. Note that for a better comparison the signs of ε(λ) and θ(λ) of the mirrored polarization states were inverted.

Tables (1)

Tables Icon

Table 1 Influence of an alignment error of ±0.01° of the i-th optical element in the PE setup (Fig. 3) for an incident polarization state of J i = 1 2 ( 1 , 1 , 0 ) T. Only errors in Δθ are tabulated, since the ellipticity of the incident, linearly polarized beam is altered by Δε < 0.001 at maximum. BSR: beam splitter reflective; BST: beam splitter transmissive; SM: silver mirror; NIM: normal-incidence mirror. Utilized simulation parameters (corresponding to the material parameters for the utilized silver mirrors/beamsplitters at 600 nm [35]): ρs = −0.90 − 0.40i, ρp = 0.70 + 0.65i, τs = 0.10 − 0.40i, τp = 0.20 − 0.50i, rs = −0.90 − 0.40i, rp = 0.70 + 0.65i, and r0 = 0.98.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

J i = ( J i , x J i , y J i , z )
M 1 = ( 0 0 0 0 r s 0 r p 0 0 )
M 2 = Rot z [ 90 ° ] Rot x [ 90 ° ] M 1 Rot x [ 90 ° ] Rot z [ 90 ° ] = ( 0 r p 0 0 0 0 0 0 r s ) .
E in = ( E s E p 0 )
E out = P 1 E in = M 2 M 1 E in = ( 0 r s r p 0 0 0 0 r s r p 0 0 ) ( E s E p 0 ) = ( r s r p E p 0 r s r p E s )
B 1 r = ( ρ s 0 0 0 0 0 0 ρ p 0 )
B 1 t = ( τ s 0 0 0 τ p 0 0 0 0 )
E red = B 4 r P 2 B 3 r B 2 t P 1 B 1 t E in
E red = ( ρ s 0 0 0 0 ρ p 0 0 0 ) ( 0 r s r p 0 0 0 0 r s r p 0 0 ) ( ρ s 0 0 0 0 ρ p 0 0 0 ) ( τ s 0 0 0 0 0 0 0 τ p ) ( 0 r s r p 0 0 0 0 r s r p 0 0 ) ( τ s 0 0 0 τ p 0 0 0 0 ) E in = ( ρ s ρ p τ s τ p r s 2 r p 2 0 0 0 ρ s ρ p τ s τ p r s 2 r p 2 0 0 0 0 ) E in = A ( E s E p 0 )
E green = B 4 t P 2 B 3 r M 0 B 2 t P 1 B 1 r E in
E green = ( τ s 0 0 0 τ p 0 0 0 0 ) ( 0 0 r s r p r s r p 0 0 0 0 0 ) ( ρ s 0 0 0 0 0 0 ρ p 0 ) ( r 0 0 0 0 r 0 0 0 0 0 ) ( τ s 0 0 0 τ p 0 0 0 0 ) ( 0 0 r s r p r s r p 0 0 0 0 0 ) ( ρ s 0 0 0 0 0 0 ρ p 0 ) E in = ( ρ s ρ p τ s τ p r s 2 r p 2 r 0 0 0 0 ρ s ρ p τ s τ p r s 2 r p 2 r 0 0 0 0 0 ) E in = A r 0 ( E s E p 0 )
s i = a i × n i , p i = a i × s i .
p i + 1 = a i + 1 × s i .
s i = s i J i ,
p i = p i J i .
O i = ( s i p i )
J i + 1 = s i + 1 s i + p i + 1 p i + 1 .
I ( δ , λ ) = I 0 ( λ ) cos 2 [ δ + ϕ ( λ ) ] + Γ ( λ ) .