Abstract

We present a two-element back-illuminated symmetric-connected uni-traveling-carrier photodiode array (SC-PDA) integrated with sub-wavelength-gratings based beam-splitter (SWGs-BS) for high power optoelectronic applications. The SC-PDA with SWGs-BS, a top-illuminated SC-PDA and a single PD were fabricated and tested. The proposed SC-PDA with SWGs-BS demonstrates a 3dB bandwidth of 23.8GHz@60mA, a saturation current of 87.9mA@12GHz and a maximum output RF power of ~16dBm@12GHz. Compared to the top-illuminated SC-PDA and the single PD, the proposed SC-PDA with SWGs-BS achieved high-power handling capability at low coupling complexity and requires no phase-matching techniques in the system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of broadband and high-output power uni-traveling-carrier photodiodes

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang
Opt. Express 21(6) 6943-6954 (2013)

Uni-traveling-carrier variable confinement waveguide photodiodes

Jonathan Klamkin, Shannon M. Madison, Douglas C. Oakley, Antonio Napoleone, Frederick J. O’Donnell, Michael Sheehan, Leo J. Missaggia, Janice M. Caissie, Jason J. Plant, and Paul W. Juodawlkis
Opt. Express 19(11) 10199-10205 (2011)

InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy

Michele Natrella, Efthymios Rouvalis, Chin-Pang Liu, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 20(17) 19279-19288 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  2. A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21(8), 9967–9973 (2013).
    [Crossref] [PubMed]
  3. X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. Williams, “High-Speed High-Saturation-Current InP/In0.53Ga0.47As Photodiode with Partially Depleted Absorber,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper WF3.
  4. R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photonics Technol. Lett. 17(7), 1513–1515 (2005).
    [Crossref]
  5. F. Jeffenberger and A. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
    [Crossref]
  6. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-Traveling-Carrier Photodiodes,” in Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), paper UC3.
  7. X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
    [Crossref]
  8. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
    [Crossref]
  9. J. Li, B. Xiong, Y. Luo, C. Sun, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current,” Opt. Express 24(8), 8420–8428 (2016).
    [Crossref] [PubMed]
  10. A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
    [Crossref]
  11. A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
    [Crossref]
  12. C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
    [Crossref]
  13. J. Fei, Y. Huang, T. Liu, X. Ma, X. Duan, K. Liu, and X. Ren, “Performance Comparison between Serial-Connected and Parallel-Connected Photodiode Array,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JW2A.129.
    [Crossref]
  14. K. J. Williams and R. D. Esman, “Design Considerations for High-Current Photodetectors,” J. Lightwave Technol. 17(8), 1443–1454 (1999).
    [Crossref]
  15. Y. Wang and Y. Huang, “Novel Beam Splitter Based on 2D Sub-wavelength High-Contrast Gratings,” in Asia Communications and Photonics Conference 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper AF2A.58.
    [Crossref]

2016 (1)

2013 (1)

2010 (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

2009 (1)

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

2007 (2)

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

2006 (1)

2005 (1)

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photonics Technol. Lett. 17(7), 1513–1515 (2005).
[Crossref]

1999 (1)

1997 (1)

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
[Crossref]

1996 (1)

F. Jeffenberger and A. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Baca, R.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
[Crossref]

Bach, H.

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

Beling, A.

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21(8), 9967–9973 (2013).
[Crossref] [PubMed]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

Campbell, J.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Campbell, J. C.

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21(8), 9967–9973 (2013).
[Crossref] [PubMed]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Cross, A. S.

Duan, N.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Esman, R. D.

Fay, P.

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photonics Technol. Lett. 17(7), 1513–1515 (2005).
[Crossref]

Fu, Y.

Goldsmith, C.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
[Crossref]

Han, Y.

Hao, Z.

Jeffenberger, F.

F. Jeffenberger and A. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Joshi, A.

F. Jeffenberger and A. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Kunkel, R.

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

Li, H.

Li, J.

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Luo, Y.

Magel, G.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
[Crossref]

Mekonnen, G. G.

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

Sankaralingam, R.

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photonics Technol. Lett. 17(7), 1513–1515 (2005).
[Crossref]

Schmidt, D.

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

Seeds, A. J.

Sun, C.

Wang, J.

Wang, L.

Wang, X.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Williams, K. J.

Xiong, B.

Zhou, Q.

IEEE J. Quantum Electron. (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Beling, H. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-Speed Miniaturized Photodiode and Parallel-Fed Traveling-Wave Photodetectors Based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photonics Technol. Lett. 17(7), 1513–1515 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech. 45(8), 1342–1350 (1997).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (4)

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. Williams, “High-Speed High-Saturation-Current InP/In0.53Ga0.47As Photodiode with Partially Depleted Absorber,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper WF3.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-Traveling-Carrier Photodiodes,” in Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), paper UC3.

Y. Wang and Y. Huang, “Novel Beam Splitter Based on 2D Sub-wavelength High-Contrast Gratings,” in Asia Communications and Photonics Conference 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper AF2A.58.
[Crossref]

J. Fei, Y. Huang, T. Liu, X. Ma, X. Duan, K. Liu, and X. Ren, “Performance Comparison between Serial-Connected and Parallel-Connected Photodiode Array,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JW2A.129.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the two-element normal-incidence back-illuminated symmetric-connected UTC photodiode array (SC-PDA) integrated with a sub-wavelength gratings based beam-splitter (SWGs-BS).
Fig. 2
Fig. 2 (a) Epitaxial structure of the PD elements. (b) Photograph of the fabricated top-illuminated SC-PDA. (c) Photograph of the fabricated back-illuminated SC-PDA for integration with the SWGs-BS.
Fig. 3
Fig. 3 Simulation results of SWGs-BS with a grating layer thickness of 650nm and a period of 600nm. The SWGs-BS is non-periodic and the area is ~100μm2.
Fig. 4
Fig. 4 (a) Photograph of part of the fabricated SWGs-BS. (b) Measured beam splitting performance of the fabricated SWGs-BS.
Fig. 5
Fig. 5 DC response of the fabricated top-illuminated SC-PDA and back-illuminated SC-PDA with SWGs-BS. The data were measured at −3V bias with 1550nm incident light.
Fig. 6
Fig. 6 Relative frequency response of the fabricated top-illuminated SC-PDA, back-illuminated SC-PDA with SWGs-BS and single PD. The data were measured at −3V bias with photocurrents of 1mA.
Fig. 7
Fig. 7 Relative frequency response of the fabricated top-illuminated SC-PDA, back-illuminated SC-PDA with SWGs-BS and single PD. The data were measured at −3V bias with photocurrents of 60mA.
Fig. 8
Fig. 8 Relative frequency response of the fabricated top-illuminated SC-PDA and back-illuminated SC-PDA with SWGs-BS. The phases of the two optical feeds were detuned for the top-illuminated SC-PDA. The data were measured at −3V bias with photocurrents of 60mA.
Fig. 9
Fig. 9 Saturation characteristics of the fabricated top-illuminated SC-PDA, back-illuminated SC-PDA with SWGs-BS and single PD measured at −3V bias and 12GHz. The dash line indicates a linear current-power relation.

Metrics