Abstract

We demonstrate an optical frequency comb in which an Er:fiber-based femtosecond laser employs nonlinear amplifier loop mirror (NALM) and nonlinear polarization evolution (NPE) mode-locking mechanisms. The laser combines advantages of good robustness of NALM and low noise feature of NPE. Our experimental results show that the hybrid mode-locked laser has high power, low relative intensity noise and self-started property, enabling the construction of a robust optical frequency comb system. In-loop relative instabilities of both stabilized repetition rate and carrier-envelope-offset frequency are well below 1 × 10−17 at 1 second integration time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical frequency combs based on a period-doubling mode-locked Er-doped fiber laser

Haoyu Wu, Ting Ma, Qiao Lu, Jindong Ma, Lei Shi, and Qinghe Mao
Opt. Express 26(1) 577-585 (2018)

All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M.E. Fermann
Opt. Express 24(3) 3095-3102 (2016)

Robust 700 MHz mode-locked Yb:fiber laser with a biased nonlinear amplifying loop mirror

Guanyu Liu, Xinghe Jiang, Aimin Wang, Guoqing Chang, Franz Kaertner, and Zhigang Zhang
Opt. Express 26(20) 26003-26008 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [Crossref]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref]
  3. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
    [Crossref]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  5. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref] [PubMed]
  6. S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
    [Crossref] [PubMed]
  7. A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  8. S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  9. A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, “Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser,” Opt. Lett. 32(17), 2553–2555 (2007).
    [Crossref] [PubMed]
  10. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [Crossref]
  11. T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
    [Crossref]
  12. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref]
  13. G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, and Z. Zhang, “500 MHz spaced Yb:fiber laser frequency comb without amplifiers,” Opt. Lett. 39(9), 2534–2536 (2014).
    [Crossref] [PubMed]
  14. Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
    [Crossref]
  15. S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
    [Crossref]
  16. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–539 (2016).
    [Crossref]
  17. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).
  18. I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).
  19. J. J. Mcferran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–1316 (2007).
    [Crossref] [PubMed]
  20. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
    [Crossref]
  21. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
    [Crossref]
  22. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  23. J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
    [Crossref] [PubMed]
  24. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [Crossref] [PubMed]
  25. S. Kim, Y. Kim, J. Park, S. Han, S. Park, Y.-J. Kim, and S.-W. Kim, “Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power,” Opt. Express 20(14), 15054–15058 (2012).
    [Crossref]
  26. X. Li, W. Zou, and J. Chen, “41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate,” Opt. Lett. 39(6), 1553–1556 (2014).
    [Crossref] [PubMed]
  27. S. Kim, J. Park, S. Han, Y.-J. Kim, and S.-W. Kim, “Coherent supercontinuum generation using Er-doped fiber laser of hybrid mode-locking,” Opt. Lett. 39(10), 2986–2989 (2014).
    [Crossref] [PubMed]
  28. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [Crossref] [PubMed]

2016 (3)

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–539 (2016).
[Crossref]

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

2015 (2)

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

2014 (4)

2013 (1)

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

2007 (5)

2006 (1)

2004 (1)

2003 (1)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

1999 (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Andrejco, M.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Bartels, A.

Baumann, E.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Chen, J.

Coddington, I.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Deutsch, C.

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[Crossref] [PubMed]

A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, “Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser,” Opt. Lett. 32(17), 2553–2555 (2007).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Dinkelaker, A.

Dong, L.

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Droste, S.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Duncker, H.

Fan, S.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Fang, Z.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Gebs, R.

Ghalmi, S.

Giorgetta, F. R.

Giunta, M.

Grosche, G.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Guo, W.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Han, S.

Hänsch, T. W.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hartl, I.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Hellmig, O.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hong, F.

Hong, F.-L.

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Hosaka, K.

Hülsing, T.

Inaba, H.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Jang, H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Jang, Y.-S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Jiang, H.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Jiang, T.

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Johnson, T. A.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Jorgensen, C. G.

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Katsuyama, T.

Kawato, S.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–539 (2016).
[Crossref]

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, “Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser,” Opt. Lett. 32(17), 2553–2555 (2007).
[Crossref] [PubMed]

Kobayashi, T.

Kobayashi, Y.

Kohfeldt, A.

Kohno, T.

Krutzik, M.

Lampmann, K.

Lee, J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Lee, K.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Lee, S.-H

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Lezius, M.

Li, C.

Li, X.

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Mandel, O.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Matsumoto, H.

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Mcferran, J. J.

Meng, F.

Meng, S.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Minoshima, K.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Nakajima, Y.

Nenadovic, L.

Newbury, N. R.

Nicholson, J. W.

Nugent-Glandorf, L.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Onae, A.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Ozimek, F.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Park, J.

Park, S.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Peters, A.

Predehl, K.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Ramachandran, S.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Schibli, T. R.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Schiemangk, M.

Schkolnik, V.

Schlager, J. B.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Schnatz, H.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Sengstock, K.

Song, Y.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–539 (2016).
[Crossref]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Swann, W. C.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Thaller, A.

Udem, Th.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Wang, A.

Wang, G.

Washburn, B. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

Wicht, A.

Wilken, T.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Windpassinger, P.

Yan, L.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Yan, M. F.

Yasuda, M.

Ycas, G.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Ye, J.

A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Yost, D.

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Zhang, L.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Zhang, S.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Zhang, Z.

Zhao, W.

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

Zou, W.

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–539 (2016).
[Crossref]

Chin. Phys. B (1)

Y. Zhang, L. Yan, W. Zhao, S. Meng, S. Fan, L. Zhang, W. Guo, S. Zhang, and H. Jiang, “A Long-Term Frequency-Stabilized Erbium-Fiber-Laser-Based Optical Frequency Comb with an Intra-Cavity Electro-Optic Modulator,” Chin. Phys. B 24(6), 064209 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanophotonics (1)

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical freuquency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Nat. Photonics (1)

T. R. Schibli, I. Hartl, D. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Nature Photon. (1)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–427 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Optica (1)

Phys. Rev. Lett. (3)

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref]

Rev. Mod. Phys. (2)

A. D. Ludlow, M. M. Boyd, and J. Ye, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Sci. Rep. (1)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(5134), 1–7 (2014).

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref] [PubMed]

Other (1)

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase-locking of a PM fiber frequency comb source,” in Optical Communication Conference, paper OFJ2 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of the Er-fiber frequency comb based on the hybrid laser. Thick solid lines and curves represent optical fibers; red solid lines represent free-space paths; and dashed lines represent electric signals. Col, collimator; λ/2, half wave plate; λ/4, quarter wave plate; ISO, isolator; EOM, electro-optic modulator; PBS, polarization beam splitter; HR, high reflective mirror; PZT, piezo-electric transducer; Splitter, 50 : 50 fiber splitter; WDM, wavelength division multiplexing; EDF, erbium-doped-fiber; PC, polarization controller; Pol, polarizer; PD, photo detector; HNLF, high nonlinear fiber; and BPF, optical band pass filter.
Fig. 2
Fig. 2 (a) RF spectrum of the repetition rate of femtosecond pulses, the fine resolution spectrum is shown in the insert. (b) Laser output power as a function of the pump power. (c) Mode-locked laser spectrum. (d) Intensity autocorrelation curve, the pulse width as a function of the pump power is shown in the inset.
Fig. 3
Fig. 3 (a) Residual intensity noise (RIN) of the output pulses. (b) RF spectrum of the free-running fceo signal.
Fig. 4
Fig. 4 (a) and (c) are phase noise curves of stabilized fceo and fbeat, black line is phase noise power spectral density (PSD) and red line is integrated phase noise. (b) and (d) are in-loop frequency instabilities of stabilized fceo and fbeat with different average time, the red dash line represents the τ−1/2 dependence due to the dead time of measurement system. Insets are the frequency deviation of the stabilized signal.

Metrics