Abstract

We present a frequency down conversion RF/photonic link with an attenuation-counter-propagating optical phase lock loop (ACP-OPLL) photonic integrated circuit (PIC) receiver. Frequency down conversion was accomplished by nonlinear optical phase modulation in a 2.5mm long transmitter (TX) multi-quantum-well (MQW) phase modulator. The down-conversion link demonstrated RF to IF conversion loss of ~9dB and spurious free dynamic range (SFDR) of ~118dB∙Hz2/3.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband OPLL photonic integrated circuit enabling ultrahigh dynamic range PM RF/photonic link

Yifei Li, Longtao Xu, Shilei Jin, Jeffrey Rodriguez, Tianyu Sun, and Peter Herczfeld
Optica 6(8) 1078-1083 (2019)

Recent progress in attenuation counterpropagating optical phase-locked loops for high-dynamic-range radio frequency photonic links [Invited]

Shilei Jin, Longtao Xu, Peter Herczfeld, Ashish Bhardwaj, and Yifei Li
Photon. Res. 2(4) B45-B53 (2014)

Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator

Longtao Xu, Shilei Jin, and Yifei Li
Opt. Express 24(8) 8405-8410 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Schaffner and W. B. Bridges, “Inter-modulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
    [Crossref]
  2. Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
    [Crossref]
  3. G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
    [Crossref]
  4. E. I. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
    [Crossref]
  5. L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
    [Crossref]
  6. Y. Li and P. Herczfeld, “Coherent PM optical link employing ACP-PPLL,” J. Lightwave Technol. 27(9), 1086–1094 (2009).
    [Crossref]
  7. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
    [Crossref]
  8. Y. Li, P. Herczfeld, A. Rosen, M. Bystrom, and T. Berceli, “Optical domain down-conversion of microwave signals for high dynamic range microwave fiber optics links,” in IEEE International Topical Meeting on Microwave Photonics (IEEE 2006), pp. 1–4.
    [Crossref]
  9. K. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y. K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Silicon RF-photonic filter and down-converter,” J. Lightwave Technol. 28(20), 3019–3028 (2010).
    [Crossref]
  10. D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. J. W. Rodwell, and J. E. Bowers, “Investigation of a novel optical phase demodulator based on a sampling phase -locked loop,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2006), pp. 1–4.
    [Crossref]
  11. A. Ramaswamy, L. A. Johansson, J. Klamkin, D. Zibar, L. A. Coldren, M. J. Rodwell, and J. E. Bowers, “Optical phase demodulation of a 10ghz RF signal using optical sampling,” in Coherent Optical Technologies and Applications (2008).
  12. R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
    [Crossref]
  13. L. Xu, S. Jin, and Y. Li, “Nonlinear phase modulation inside an MQW optical modulator,” J. Lightwave Technol. 34(14), 3300–3305 (2016).
    [Crossref]
  14. L. Xu, S. Jin, and Y. Li, “Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator,” Opt. Express 24(8), 8405–8410 (2016).
    [Crossref] [PubMed]
  15. Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
    [Crossref]
  16. L. Xu, S. Jin, and Y. Li, “RF photonic link with a MQW phase modulator transmitter and an ACP-OPLL receiver,” IEEE Photonics Technol. Lett. 29(2), 259–262 (2017).
    [Crossref]
  17. O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

2017 (1)

L. Xu, S. Jin, and Y. Li, “RF photonic link with a MQW phase modulator transmitter and an ACP-OPLL receiver,” IEEE Photonics Technol. Lett. 29(2), 259–262 (2017).
[Crossref]

2016 (2)

2011 (1)

R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
[Crossref]

2010 (2)

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

K. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y. K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Silicon RF-photonic filter and down-converter,” J. Lightwave Technol. 28(20), 3019–3028 (2010).
[Crossref]

2009 (1)

1999 (2)

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

E. I. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[Crossref]

1996 (1)

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

1994 (1)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

1993 (2)

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
[Crossref]

J. H. Schaffner and W. B. Bridges, “Inter-modulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[Crossref]

Ackerman, E. I.

E. I. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[Crossref]

Beals, M.

Beattie, J.

Betts, G. E.

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

Bhardwaj, A.

R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
[Crossref]

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

Bowers, J.

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

Bridges, W. B.

J. H. Schaffner and W. B. Bridges, “Inter-modulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[Crossref]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
[Crossref]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
[Crossref]

Carothers, D.

Chen, Y. K.

Chiu, Y.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

Garner, S.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

Gill, D. M.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
[Crossref]

Herczfeld, P.

Jalali, B.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

Jin, S.

Kanaya, H.

O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

Kimerling, L. C.

Lealman, I. F.

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

Li, Y.

L. Xu, S. Jin, and Y. Li, “RF photonic link with a MQW phase modulator transmitter and an ACP-OPLL receiver,” IEEE Photonics Technol. Lett. 29(2), 259–262 (2017).
[Crossref]

L. Xu, S. Jin, and Y. Li, “Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator,” Opt. Express 24(8), 8405–8410 (2016).
[Crossref] [PubMed]

L. Xu, S. Jin, and Y. Li, “Nonlinear phase modulation inside an MQW optical modulator,” J. Lightwave Technol. 34(14), 3300–3305 (2016).
[Crossref]

R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
[Crossref]

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

Y. Li and P. Herczfeld, “Coherent PM optical link employing ACP-PPLL,” J. Lightwave Technol. 27(9), 1086–1094 (2009).
[Crossref]

Michel, J.

Moodie, D. G.

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

Nizhnik, O.

O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

Patel, S. S.

Perrin, S. D.

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

Pokharel, R. K.

O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

Pomerene, A.

Rasras, M. S.

Ristic, S.

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

Schaffner, J. H.

J. H. Schaffner and W. B. Bridges, “Inter-modulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[Crossref]

Steier, W.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

Tu, K.

Wang, R.

R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
[Crossref]

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

Westbrook, L. D.

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

White, A. E.

Xu, L.

Yoshida, K.

O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

Electron. Lett. (1)

L. D. Westbrook, D. G. Moodie, I. F. Lealman, and S. D. Perrin, “Method for linearizing analogue DFB lasers using an integrated MQW electro-absorption modulator,” Electron. Lett. 32(2), 134–135 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 11(1), 48–50 (1999).
[Crossref]

R. Wang, A. Bhardwaj, and Y. Li, “Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator,” IEEE Photonics Technol. Lett. 23(10), 645–647 (2011).
[Crossref]

Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, “High linearity InP-based phase modulators using a shallow quantum-well design,” IEEE Photonics Technol. Lett. 22(18), 1340–1342 (2010).
[Crossref]

L. Xu, S. Jin, and Y. Li, “RF photonic link with a MQW phase modulator transmitter and an ACP-OPLL receiver,” IEEE Photonics Technol. Lett. 29(2), 259–262 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

E. I. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[Crossref]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (1)

Other (4)

O. Nizhnik, R. K. Pokharel, H. Kanaya, and K. Yoshida, “High dynamic range mixer in CMOS 0.18 μm technology for WLAN direct conversion receiver,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (2008), pp. 143–146.

D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. J. W. Rodwell, and J. E. Bowers, “Investigation of a novel optical phase demodulator based on a sampling phase -locked loop,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2006), pp. 1–4.
[Crossref]

A. Ramaswamy, L. A. Johansson, J. Klamkin, D. Zibar, L. A. Coldren, M. J. Rodwell, and J. E. Bowers, “Optical phase demodulation of a 10ghz RF signal using optical sampling,” in Coherent Optical Technologies and Applications (2008).

Y. Li, P. Herczfeld, A. Rosen, M. Bystrom, and T. Berceli, “Optical domain down-conversion of microwave signals for high dynamic range microwave fiber optics links,” in IEEE International Topical Meeting on Microwave Photonics (IEEE 2006), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 RF/photonic link with an ACP-OPLL receiver.
Fig. 2
Fig. 2 (a) TX MQW phase modulator cross section and MQW design. (b) TX MQW phase modulator.
Fig. 3
Fig. 3 ACP-OPLL schematic and cross section.
Fig. 4
Fig. 4 ACP-OPLL linear phase demodulation sensitivity.
Fig. 5
Fig. 5 Link down conversion measurement results, when PD photocurrent was 23.7mA per PD. (a) A sample of the link output. (b) OIP3 directly at the ACP-OPLL output.
Fig. 6
Fig. 6 Link RF to IF conversion gain and SFDR at different LO and IF frequencies.

Tables (1)

Tables Icon

Table 1 Comparison with reported optical and electrical frequency down-conversion approaches.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

IMD 3 TXPM = I PD Z load 1+G(ω) 1 8 α A RF 3 A LO η 4 V T 4 (1+ 1 8 A LO 2 η 2 V T 2 + 1 240 A LO 4 η 4 V T 4 )( cos ω 1 t+cos ω 2 t )
G(ω)=2 β 1 (LO) I pd Z load e jω τ d
IMD 3 LOPM = 3 β 3 (LO) β 1 (TX) 3 4 β 1 (LO) 4 G 4 (ω) [ 1+G(ω) ] 4 A RF 3 ( cos ω 1 t+cos ω 2 t )
IMD 3 HPD = G(ω) [ 1+G(ω) ] 4 β 1 (TX) 3 8 β 1 (LO) A RF 3 ( cos ω 1 t+cos ω 2 t )
β 1 (TX) = 1 2 α A LO η 2 V T 2 + 1 16 α A LO 3 η 4 V T 4 + 1 384 α A LO 5 η 6 V T 6
V n_floor 2 = 4 δ θ TX 2 | 1exp(jωτ) | 2 I PD 2 +| I PD1 2 | Γ 2 RIN+ 4KT | Z load | + δ I shot 2 | 1+G(ω) | 2 | Z load | 2 +KT Z TX | G link v | 2
V n_floor 2 = 4 I PD e | 1+G(ω) | 2 | Z load | 2
δ θ n_floor 2 = V n_floor 2 | Z load | 2 4 I PD 2 | 1+G(ω) | 2 = e I PD

Metrics