Abstract

According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

Jian-Jun Chen, Zheng-Mao Wu, Xi Tang, Tao Deng, Li Fan, Zhu-Qiang Zhong, and Guang-Qiong Xia
Opt. Express 23(6) 7173-7183 (2015)

Analysis and characterization of chaos generated by free-running and optically injected VCSELs

Penghua Mu, Wei Pan, and Nianqiang Li
Opt. Express 26(12) 15642-15655 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Ji and M. J. Zhang, “Ultra-wideband microwave-photonic chaotic radar for remote ranging,” International Conference on Optical Communication. 121(1), 1–3 (2013).
    [Crossref]
  2. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010).
    [Crossref] [PubMed]
  3. M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  4. K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
    [Crossref]
  5. F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
    [Crossref]
  6. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40(33), 6111–6120 (2001).
    [Crossref] [PubMed]
  7. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41(30), 6442–6450 (2002).
    [Crossref] [PubMed]
  8. A. Rybaltowski and A. Taflove, “Signal-to-noise ratio in direct-detection mid-infrared random-modulation continuous-wave lidar in the presence of colored additive noise,” Opt. Express 9(8), 389–399 (2001).
    [Crossref] [PubMed]
  9. D. M. He and G. G. L. Seet, “Underwater lidar imaging (UWLI) system in short turbid water tank,” Proc. SPIE 4416, 272–275 (2001).
    [Crossref]
  10. M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41(24), 4975–4987 (2002).
    [Crossref] [PubMed]
  11. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation CW lidar,” Appl. Opt. 22(9), 1382–1386 (1983).
    [Crossref] [PubMed]
  12. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation CW lidar,” Appl. Opt. 25(1), 63–67 (1986).
    [Crossref] [PubMed]
  13. F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2003).
    [Crossref]
  14. J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun. 167(1-6), 273–282 (1999).
    [Crossref]
  15. T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
    [Crossref]
  16. J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
    [Crossref]
  17. J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
    [Crossref]
  18. F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
    [Crossref]
  19. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  20. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  21. B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
    [Crossref]
  22. B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
    [Crossref]
  23. P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
    [Crossref]
  24. X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, “High-resolution random-modulation cw lidar,” Appl. Opt. 50(22), 4478–4488 (2011).
    [Crossref] [PubMed]
  25. R. M. Nguimdo, M. Khoder, J. Danckaert, G. Van der Sande, and G. Verschaffelt, “Fast phase response and chaos bandwidth enhancement in semiconductor lasers subject to optical feedback and injection,” Opt. Lett. 39(20), 5945–5948 (2014).
    [Crossref] [PubMed]
  26. A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
    [Crossref]
  27. A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
    [Crossref]
  28. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
    [Crossref] [PubMed]
  29. A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
    [Crossref]
  30. A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
    [Crossref]
  31. M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
    [Crossref]
  32. É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
    [Crossref] [PubMed]
  33. I. Gatare, M. Sciamanna, A. Locquet, and K. Panajotov, “Influence of polarization mode competition on the synchronization of two unidirectionally coupled vertical-cavity surface-emitting lasers,” Opt. Lett. 32(12), 1629–1631 (2007).
    [Crossref] [PubMed]
  34. D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
    [Crossref]
  35. Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).
  36. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28(17), 1543–1545 (2003).
    [Crossref] [PubMed]
  37. M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
    [Crossref]
  38. D. Zhong, Y. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
    [Crossref] [PubMed]
  39. D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
    [Crossref]
  40. L. Yousefi, “Highly directive hybrid plasmonic leaky wave optical nanoantenna,” Prog. Electromagnetics Res. 50, 85–90 (2014).
    [Crossref]
  41. M. A. Panahi, L. Yousefi, and M. Shahabadi, “Highly directive hybrid plasmonic leaky-wave optical antenna with controlled side-lobe level,” J. Lightwave Technol. 33(23), 4791–4798 (2015).
    [Crossref]
  42. G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett. 36(23), 4533–4535 (2011).
    [Crossref] [PubMed]
  43. Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
    [Crossref]
  44. Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
    [Crossref] [PubMed]
  45. W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1), 303–311 (2001).
    [Crossref]
  46. G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
    [Crossref]

2017 (3)

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

2016 (4)

A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
[Crossref]

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref] [PubMed]

D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
[Crossref]

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

2015 (6)

M. A. Panahi, L. Yousefi, and M. Shahabadi, “Highly directive hybrid plasmonic leaky-wave optical antenna with controlled side-lobe level,” J. Lightwave Technol. 33(23), 4791–4798 (2015).
[Crossref]

D. Zhong, Y. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
[Crossref] [PubMed]

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

2014 (3)

R. M. Nguimdo, M. Khoder, J. Danckaert, G. Van der Sande, and G. Verschaffelt, “Fast phase response and chaos bandwidth enhancement in semiconductor lasers subject to optical feedback and injection,” Opt. Lett. 39(20), 5945–5948 (2014).
[Crossref] [PubMed]

L. Yousefi, “Highly directive hybrid plasmonic leaky wave optical nanoantenna,” Prog. Electromagnetics Res. 50, 85–90 (2014).
[Crossref]

Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).

2013 (1)

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

2012 (1)

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[Crossref]

2011 (3)

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, “High-resolution random-modulation cw lidar,” Appl. Opt. 50(22), 4478–4488 (2011).
[Crossref] [PubMed]

G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett. 36(23), 4533–4535 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
[Crossref]

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

2008 (2)

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
[Crossref]

2007 (1)

2004 (2)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

2003 (3)

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2003).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28(17), 1543–1545 (2003).
[Crossref] [PubMed]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

2002 (2)

2001 (7)

A. Rybaltowski and A. Taflove, “Signal-to-noise ratio in direct-detection mid-infrared random-modulation continuous-wave lidar in the presence of colored additive noise,” Opt. Express 9(8), 389–399 (2001).
[Crossref] [PubMed]

D. M. He and G. G. L. Seet, “Underwater lidar imaging (UWLI) system in short turbid water tank,” Proc. SPIE 4416, 272–275 (2001).
[Crossref]

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40(33), 6111–6120 (2001).
[Crossref] [PubMed]

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1), 303–311 (2001).
[Crossref]

1999 (1)

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun. 167(1-6), 273–282 (1999).
[Crossref]

1995 (1)

Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

1986 (1)

1983 (1)

Ai, X.

Aida, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Alan Shore, K.

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

Alonge, F.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
[Crossref]

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Baba, H.

Barr, T. A.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Blondel, M.

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Branciforte, M.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
[Crossref]

Bristow, M. P.

Cariou, J.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Cecchi, G.

Chen, J. J.

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

Chen, Y. C.

Cheng, C. H.

Corron, N. J.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Dahnoun, N.

Danckaert, J.

Davis, P.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Delfyett, P. J.

Deng, T.

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).

Du, P. F.

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

Eacock, J. R.

Edner, H.

Fan, L.

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

Feng, Q.

Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Gatare, I.

Geng, D. X.

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

Gong, M. L.

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

Guern, Y.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Harris, M.

He, D. M.

D. M. He and G. G. L. Seet, “Underwater lidar imaging (UWLI) system in short turbid water tank,” Proc. SPIE 4416, 272–275 (2001).
[Crossref]

Heil, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Hua, S. W.

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

Ji, Y.

Ji, Y. N.

Y. N. Ji and M. J. Zhang, “Ultra-wideband microwave-photonic chaotic radar for remote ranging,” International Conference on Optical Communication. 121(1), 1–3 (2013).
[Crossref]

Johansson, T.

Kane, D. M.

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun. 167(1-6), 273–282 (1999).
[Crossref]

Khoder, M.

Kong, L. Q.

Lawrence, J. S.

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun. 167(1-6), 273–282 (1999).
[Crossref]

Lee, W. K.

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1), 303–311 (2001).
[Crossref]

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Li, J. X.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

Li, P.

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Lin, F. Y.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2003).
[Crossref]

Lin, X. D.

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2003).
[Crossref]

Liu, L.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

Liu, T.

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Liu, Y.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Liu, Z. Y.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Locquet, A.

Lotrian, J.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Luo, W.

D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
[Crossref]

D. Zhong, Y. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
[Crossref] [PubMed]

Mandridis, D.

Mégret, P.

Mercier, É.

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref] [PubMed]

Moloney, J. V.

Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Motta, F.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
[Crossref]

Myllylä, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Myneni, K.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Nelson, R. L.

Nguimdo, R. M.

Nguyen, D.

Nock, R.

Olivard, P.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Ozdur, I.

Ozharar, S.

Panahi, M. A.

Panajotov, K.

Pantani, L.

Pearson, G. N.

Pellen, F.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Pethel, S. D.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Piracha, M. U.

Quirce, A.

A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
[Crossref]

Raimondi, V.

Rarity, J. G.

Reed, B. R.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Roberts, P. J.

Rui, G.

Rybaltowski, A.

A. Rybaltowski and A. Taflove, “Signal-to-noise ratio in direct-detection mid-infrared random-modulation continuous-wave lidar in the presence of colored additive noise,” Opt. Express 9(8), 389–399 (2001).
[Crossref] [PubMed]

Sakurai, K.

Sciamanna, M.

Seet, G. G. L.

D. M. He and G. G. L. Seet, “Underwater lidar imaging (UWLI) system in short turbid water tank,” Proc. SPIE 4416, 272–275 (2001).
[Crossref]

Shahabadi, M.

She, W. L.

G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
[Crossref]

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1), 303–311 (2001).
[Crossref]

Sugimoto, N.

Sun, G. H.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Sundnér, B.

Svanberg, S.

Taflove, A.

A. Rybaltowski and A. Taflove, “Signal-to-noise ratio in direct-detection mid-infrared random-modulation continuous-wave lidar in the presence of colored additive noise,” Opt. Express 9(8), 389–399 (2001).
[Crossref] [PubMed]

Takeuchi, N.

Tang, X.

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

Thienpont, H.

A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28(17), 1543–1545 (2003).
[Crossref] [PubMed]

Uchida, A.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Ueno, T.

Vally, A.

A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
[Crossref]

Van der Sande, G.

Veretennicoff, I.

Verschaffelt, G.

Virte, M.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[Crossref]

Wang, A.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Wang, A. B.

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, B.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wang, B. J.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, H. C.

G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
[Crossref]

Wang, W.

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

Wang, Y.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Wang, Y. C.

Weibring, P.

Wolfersberger, D.

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref] [PubMed]

Wu, Z. M.

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

Xia, G. Q.

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

Xie, Y. B.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Xu, G. L.

D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
[Crossref]

Xu, H.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yang, P.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

Yang, Q. J.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Yang, X.

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

Yang, Y.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yilmaz, T.

Yousefi, L.

Yuancai, L. L.

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

Zhan, Q.

Zhang, J.

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Zhang, M.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Zhang, M. J.

Y. N. Ji and M. J. Zhang, “Ultra-wideband microwave-photonic chaotic radar for remote ranging,” International Conference on Optical Communication. 121(1), 1–3 (2013).
[Crossref]

Zhang, X. J.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Zheng, G. L.

Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).

G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
[Crossref]

Zhong, D.

Zhong, D. Z.

D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
[Crossref]

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

Zhong, Z. D.

Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).

Zhu, Y. Y.

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Y. B. Xie, Z. Y. Liu, Q. J. Yang, G. H. Sun, X. J. Zhang, and Y. Y. Zhu, “Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons,” Appl. Phys. Lett. 108(13), 131102 (2016).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. B (1)

D. Z. Zhong, W. Luo, and G. L. Xu, “Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection,” Chin. Phys. B 25(9), 094202 (2016).
[Crossref]

Entropy (Basel) (1)

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy (Basel) 17(4), 2082–2093 (2015).
[Crossref]

IEEE J. Quantum Electron. (4)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

A. Quirce, A. Vally, and H. Thienpont, “Enhancement of chaos bandwidth in VCSELs induced by simultaneous orthogonal optical injection and optical feedback,” IEEE J. Quantum Electron. 52(10), 1–9 (2016).
[Crossref]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Wang, B. J. Wang, L. L. Yuancai, and K. Alan Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photonics J. (2)

J. J. Chen, Z. M. Wu, L. Fan, X. Tang, X. D. Lin, T. Deng, and G. Q. Xia, “Polarization bistability in a 1550nm vertical-cavity surface-emitting laser subject to variable polarization optical injection,” IEEE Photonics J. 9(2), 1502309 (2017).
[Crossref]

J. J. Chen, Z. M. Wu, T. Deng, X. Tang, X. Yang, and G. Q. Xia, “Current-and feedback-induced state bistability in a 1550nm-VCSEL with negative optoelectronic feedback,” IEEE Photonics J. 9(1), 1500310 (2017).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Trans. Instrum. Meas. 58(2), 318–329 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

G. L. Zheng, H. C. Wang, and W. L. She, “Non-collinear quasi-phase-matched linear electro-optic effect in periodically poled LiNbO3 and its applications,” J. Opt. A, Pure Appl. Opt. 10(1), 015102 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D Appl. Phys. 34(7), 1122–1130 (2001).
[Crossref]

Laser Phys. (1)

T. Deng, G. Q. Xia, J. J. Chen, X. Tang, X. D. Lin, X. Yang, S. W. Hua, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of 1550nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback,” Laser Phys. 27(4), 045402 (2017).
[Crossref]

Nat. Photonics (1)

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[Crossref]

Opt. Commun. (3)

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1), 303–311 (2001).
[Crossref]

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun. 167(1-6), 273–282 (1999).
[Crossref]

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

Opt. Eng. (2)

P. F. Du, D. X. Geng, W. Wang, and M. L. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[Crossref]

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Photo. Technol. Lett. IEEE (1)

M. Zhang, T. Liu, P. Li, A. Wang, J. Zhang, and Y. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected fabry-pérot laser diode with optical feedback,” Photo. Technol. Lett. IEEE 23(24), 1872–1874 (2011).
[Crossref]

Phys. Rev. A (1)

Q. Feng, J. V. Moloney, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

D. M. He and G. G. L. Seet, “Underwater lidar imaging (UWLI) system in short turbid water tank,” Proc. SPIE 4416, 272–275 (2001).
[Crossref]

Prog. Electromagnetics Res. (1)

L. Yousefi, “Highly directive hybrid plasmonic leaky wave optical nanoantenna,” Prog. Electromagnetics Res. 50, 85–90 (2014).
[Crossref]

Sci. Rep. (1)

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref] [PubMed]

Wuli Xuebao (1)

Z. D. Zhong, T. Deng, and G. L. Zheng, “Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization division multiplexing,” Wuli Xuebao 63(7), 070504 (2014).

Other (1)

Y. N. Ji and M. J. Zhang, “Ultra-wideband microwave-photonic chaotic radar for remote ranging,” International Conference on Optical Communication. 121(1), 1–3 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme diagram of the multi-target ranging by using CPLIDAR based on the drive-response VCSELs. Here, M: mirror; PPLN: periodic poled LiNbo3; IS: isolator; FR: Faraday rotator; HWP: half wave plate; MVCSEL: master VCSEL; SVCSEL: slave VCSEL; um and us: the bias current of MVCSEL and SVCSEL, respectively; E1 and E2: applied electric field; BS: beam splitter; PBS: polarization beam splitter; m1 and m2: modulated microwave signal; m 1 and m 2 : demodulated microwave signals; MOD: modulator; TYPOA: transmitting y-polarization optical antenna; TXPOA: transmitting x-polarization optical antenna; RXPOA: receiving x-polarization optical antenna; RYPOA: receiving y-polarization optical antenna; NDF: neutral density filter; DEL: delayer; F: filter; HT: Hilbert transform; PD: photodiode; CD: distance calculation; DIV: divider; SUB: subtractor; OA: optical amplifier.
Fig. 2
Fig. 2 Maps of the correlation coefficients ρ x and ρ y evolution in the parameter space of u and τ c , as well as in that of E and τ c .
Fig. 3
Fig. 3 Dependence of the correlation coefficients ρx and ρy on the propagating delay time τ c under different parameters such as E and u, where k f = k inj =2n s 1 and E = 0.36kV/ mm in (a) and (b); u = 1.5 in (c) and (d).
Fig. 4
Fig. 4 Chaotic behavior of the output x-PC and y-PC from the M-VCSEL and those from the SVCSEL with τ c =5ns, E = 0.36kV/mm, u = 1.5. The left column: time series; the right column: power spectrum distribution.
Fig. 5
Fig. 5 Chaotic behavior of the output x-PC and y-PC from the M-VCSEL and those from the VCSEL when τ c =7ns, E = 0.36kV/mm, u = 1.5. The left column: time series; The right column: power spectrum distribution.
Fig. 6
Fig. 6 For the targets T1 and T2 at different positions, time traces of the phases ϕ0 and ϕ, as well as the measured distances d1 and d2 when the output two PCs are in complete chaotic synchronization state. Here, (a): ϕ0 and ϕ for L T 1 = 0.45m; (b) ϕ0 and ϕ for L T 1 = 0.75m; (c): ϕ0 and ϕ for L T 2 = 0.75m; (d): ϕ0 and ϕ for L T 2 = 1.05m; (e): d1 for L T 1 = 0.45m (the blue solid line), and d1 for L T 1 = 0.75m (the red solid line); (f): d2 for L T 2 = 0.75m (the red dotted line), and d2 for L T 2 = 1.05m (the blue dotted line).
Fig. 7
Fig. 7 Maps of the relative errors RE1 and RE2 evolutions with the propagating time τ c in the parameter space of μ and τ c [(a) and (b)], where E = 0.36kV/mm. The maps of their evolutions in the parameter space of E and τ c [(c) and (d)], where μ=1.5 ; (e)-(h): the partial enlargement of (a)-(d) in turn.
Fig. 8
Fig. 8 Dependences of the relative errors (RE1 and RE2), the signal-to noise ratios (SNR1 and SNR2), and the correlation coefficients ( ρ x and ρ y ) on the propagating time τ c , where μ=1.5, E=0kV/mm.
Fig. 9
Fig. 9 Dependences of the relative errors (RE1 and RE2), the signal-to noise ratios (SNR1 and SNR2), and the correlation coefficients ( ρ x and ρ y ) on the propagating time τ c , where E = 0.36kV/mm and μ=1.5.
Fig. 10
Fig. 10 Evolutions of the correlation coefficients ( ρ x and ρ y ), and the relative errors (RE1 and RE2) with the four different key parameters when E = 0.36kV/mm, τc = 7ns, μ=1.5 and kf = kinj. Here, (a1): ρ x and ρ y α γ P ; (a2): RE1 and RE2 α γ P ; (b1): ρ x and ρ y α γ s ; (b2): RE1 and RE2 α γ s ; (c1): ρ x and ρ y α kf; (c2): RE1 and RE2 αkf; (d1): ρ x and ρ y ατ ; (d2): RE1 and RE2 ατ.

Tables (1)

Tables Icon

Table 1 Numerical values for the calculation of the target ranging

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

d dt ( E Mx (t) E My (t) )=k( 1+ia ){[ N M (t)1]}( E Mx (t) E My (t) )±k( 1+ia )i n M (t)( E My (t) E Mx (t) ) ( r a +i r p )( E Mx (t) E My (t) )+ k f ( E Mx (tτ) E My (tτ) ) ×exp(i ω 0 τ)[ 1+ m 1 (tτ) 1+ m 2 (tτ) ]+( β sp γ e N M ζ x β sp γ e N M ζ y ),
d N M (t) dt = r e { N M (t) μ M + N M (t)(| E Mx (t) | 2 +| E My (t) | 2 )+i n M (t) [ E My (t) E Mx * (t) E Mx (t) E My * (t)]},
d n M (t) dt = r s n M (t) r e { n M (t)(| E Mx (t) | 2 +| E My (t) | 2 )+i N M (t) [ E My (t) E Mx * (t) E Mx (t) E My * (t)]}.
d dt ( E Sx (t) E Sy (t) )=k( 1+ia ){[ N S (t)1]}( E Sx (t) E Sy (t) )±k( 1+ia )i n S (t) ( E Sy (t) E Sx (t) )( r a +i r p )( E Sx (t) E Sy (t) )+ k inj ( E px (t τ c ) E py (t τ c ) ) ×( exp(i ω 0 τ c ) exp(i ω 0 τ c ) )+( β sp γ e N ζ x β sp γ e N ζ y ),
d N S (t) dt = r e { N S (t) μ S + N S (t)(| E Sx (t) | 2 +| E Sy (t) | 2 )+i n S (t) [ E Sy (t) E Sx * (t) E Sx (t) E Sy * (t)]},
d n S (t) dt = r s n S (t) r e { n S (t)(| E Sx (t) | 2 +| E Sy (t) | 2 )+i N S (t) [ E Sy (t) E Sx * (t) E Sx (t) E Sy * (t)]},
U x,y (0,tτ)= ω 0 V S A T L ν c n 1,2 E Mx,My (tτ)(1+ m 1,2 (tτ)).
U x,y (0,t τ c )= ω 0 V S A T L ν c n 1,2 E Mx,My (t)(1+ m 1,2 (t τ c )),
U x,y (L,t)= ρ x,y (L,t)exp(i β 0 L)exp[i ϕ x,y (L,t t 0 )],
ρ x,y (L,t t 0 )= { U x,y 2 (0,t t 0 ) cos 2 (νL) + [ γ U x,y (0,t t 0 ) d 1,3 U y,x (0,t t 0 ) ν ] 2 sin 2 (νL) } 1 2 .
ϕ x,y (L,t t 0 )= tan 1 [ ±γ U x,y (0,t t 0 ) d 1,3 U y,x (0,t t 0 ) v U x,y (0,t t 0 ) tan(vL) ].
β 0 = Δk d 2 d 4 2 ,
ν= (Δk+ d 2 d 4 ) 2 +4 d 1 d 3 2 ,
γ= d 4 d 2 Δk 2 ,
d 1 = k 0 2 n 1 n 2 r eff1 E 0 f 1 ,
d 2 = k 0 2 n 1 r eff2 E 0 f 0 ,
d 3 = k 0 2 n 1 n 2 r eff1 E 0 f 1 ,
d 4 = k 0 2 n 2 r eff3 E 0 f 0 ,
r eff1 = j,k,l ( ε ij ε kk ) a j r jkl b k c l ,
r eff2 = j,k,l ( ε ij ε kk ) a j r jkl a k c l ,
r eff3 = j,k,l ( ε ij ε kk ) b j r jkl b k c l ,
E Mx,My (tτ)= S A T L ν c n 1,2 ω 0 V U x,y (L,tτ).
E px,py (t τ c )= S A T L ν c n 1,2 ω 0 V U x,y (L,t τ c ).
ρ x,y = [ I Mx,My (tΔt) I Mx,My (tΔt) ][ I Sx,Sy (tΔt) I Sx,Sy (tΔt) ] { [ I Mx,My (tΔt) I Mx,My (tΔt) ] 2 [ [ I Sx,Sy (tΔt) I Sx,Sy (tΔt) ] 2 ] } 1/2 ,
E Sx,Sy (t)= E Mx,My (tΔt).
m 1,2 ' (t-Δt)= (1+ m 1,2 (tΔt)) E Mx,My (tΔt) E Sx,Sy (t) 1.
m 1,2 (t)=Asin(ωt+ ϕ 0 ),
m 1,2 ' (tΔt)=Asin[ω(tΔt)+ ϕ 1,2 (t)].
ψ 1,2 (tΔt)= m 1,2 ' (tΔt)+j m ˜ 1,2 ' (tΔt)=A e jϕ(t) ,
ϕ(t)=arctan m ˜ 1,2 ' (tΔt) m 1,2 ' (tΔt) .
Δt= Δϕ(t) ω ,
d 1 = (Δt+τ τ T )c 2 ,
d 2 = (Δt+τ)c 2 .
P Mx,y =10 log 10 ( | E Mx,My | 2 | E Mx | 2 + | E My | 2 ) , P Sx,y =10 log 10 ( | E Sx,Sy | 2 | E Sx | 2 + | E Sy | 2 ).
R E 1,2 = | < d 1,2 > L T 1,2 | L T 1,2 ×100%,
SN R 1,2 =10 log 10 ( P S 1,2 / P n 1,2 ),
P s 1,2 = [ E Mx,My (tΔt)/ E Sx,Sy (t)] 2 .
P n 1,2 = (D ξ x,y ) 2 .

Metrics