Abstract

Recent progress has made matalenses a reality, with many publications relating to methods of implementation and performance evaluation of these elements. Basic metalens function is similar to that of a continuous (kinoform) diffractive lens, but the advantage is that they can be manufactured as a binary component. A significant limitation of metalenses, is its strong chromatic aberration. Recently there has been some success in correcting metalens chromatic aberration, albeit at the expense of transmission efficiency towards the desired diffraction order. Clearly, there is a tradeoff between parameters such as spectral bandwidth and spatial resolution. Hence, a major goal of this paper is to set up a metric for evaluation of metalens performance, allowing fair comparison of novel metalens technologies, such as achromatic metalenses, in terms of optical performance. Furthermore, we explore possibilities for practical use of non-chromatically corrected metalenses in polychromatic applications, by optimizing the metalens parameters. It is our hope that the current manuscript will serve as a guide for the design and evaluation of metalenses for practical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging with flat optics: metalenses or diffractive lenses?

Sourangsu Banerji, Monjurul Meem, Apratim Majumder, Fernando Guevara Vasquez, Berardi Sensale-Rodriguez, and Rajesh Menon
Optica 6(6) 805-810 (2019)

Calculation of retinal image quality for polychromatic light

Sowmya Ravikumar, Larry N. Thibos, and Arthur Bradley
J. Opt. Soc. Am. A 25(10) 2395-2407 (2008)

Varifocal zoom imaging with large area focal length adjustable metalenses

Shane Colburn, Alan Zhan, and Arka Majumdar
Optica 5(7) 825-831 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143 (1999).
    [Crossref]
  2. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: A coupled bloch-mode insight,” J. Lightwave Technol. 24(6), 2442–2449 (2006).
    [Crossref]
  3. J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, “Design of space-variant diffractive polarization elements,” J. Opt. Soc. Am. A 20(2), 282–289 (2003).
    [Crossref] [PubMed]
  4. U. Levy, C.-H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
    [Crossref] [PubMed]
  5. Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
    [Crossref]
  6. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
    [Crossref] [PubMed]
  7. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref] [PubMed]
  8. J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
    [Crossref] [PubMed]
  9. U. Levy, H. C. Kim, C. H. Tsai, and Y. Fainman, “Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett. 30(16), 2089–2091 (2005).
    [Crossref] [PubMed]
  10. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
    [Crossref] [PubMed]
  11. B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
    [Crossref] [PubMed]
  12. J. Bar-David, L. Stern, and U. Levy, “Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors,” Nano Lett. 17(2), 1127–1131 (2017).
    [Crossref] [PubMed]
  13. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).
  14. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
    [Crossref] [PubMed]
  15. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  16. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths : past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
    [Crossref]
  17. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
    [Crossref] [PubMed]
  18. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  19. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628 (2016).
    [Crossref]
  20. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
    [Crossref] [PubMed]
  21. M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
    [Crossref] [PubMed]
  22. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics,” Optica 4(6), 625–632 (2017).
    [Crossref]
  23. D. D. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Praather, Diffractive Optics (SPIE Press, 2003).
  24. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000).
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  26. L. Levi, Applied Optics Vol. 1 (Wiley, 1966).
  27. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001).
  28. D. A. Buralli and G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28(18), 3950–3959 (1989).
    [Crossref] [PubMed]
  29. I. Tomić and I. Karlović, “Practical assessment of veiling glare in camera lens system,” J. Graph. Eng. Des. 5, 23–28 (2014).
  30. E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
    [Crossref]
  31. J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).
  32. J. Wilson and J. Hawkes, Optoelectronics: An Introduction (Prentice Hall, 1998).
  33. E. Parzen, Modern Probability Theory and Its Applications (Wiley, 1960).
  34. G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE Press, 2011).
  35. G. C. Holst, Testing and Evaluation of Imaging Infrared Systems (SPIE, 2008).
  36. G. C. Holst, Electro-Optical Imaging System Performance, 5th Ed. (SPIE, 2008).
  37. Y. Zhang, J. Dai, and W. Li, “Measurement of minimum resolvable contrast based on human visual property,” in International Symposium on Instrumentation Science and Technology, J. Tan and X. Wen, eds. (2008), Vol. 7133, p. 71333V.
    [Crossref]
  38. R. C. González and R. E. Woods, “Digital Image Processing 2nd Edition,” in Prentice Hall (2002).
  39. Electro-Optics Handbook (Burle Industries Inc., 1974).
  40. J. C. Wyant and K. Creath, Basic Wavefront Aberration Theory for Optical Metrology in Applied Optics and Optical Engineering Vol. XI (Academic Press, 1992).
  41. J. G. Nagy, V. P. Pauca, R. J. Plemmons, and T. C. Torgersen, “Space-varying restoration of optical images,” J. Opt. Soc. Am. A 14(12), 3162–3174 (1997).
    [Crossref]
  42. H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
    [Crossref] [PubMed]
  43. H. Hong and T. Zhang, “Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths,” Opt. Eng. 42(12), 3471–3486 (2003).
    [Crossref]
  44. O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
    [Crossref] [PubMed]
  45. Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
    [Crossref]
  46. P. M. Hubel, “Foveon Technology and the Changing Landscape of Digital Cameras,” in Proc. Thirteen. IS&T Color Imaging Conf. p. 314–317 (2005).

2017 (5)

J. Bar-David, L. Stern, and U. Levy, “Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors,” Nano Lett. 17(2), 1127–1131 (2017).
[Crossref] [PubMed]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths : past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics,” Optica 4(6), 625–632 (2017).
[Crossref]

2016 (5)

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

2015 (7)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
[Crossref] [PubMed]

2014 (2)

I. Tomić and I. Karlović, “Practical assessment of veiling glare in camera lens system,” J. Graph. Eng. Des. 5, 23–28 (2014).

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

2008 (1)

2007 (1)

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

2003 (2)

J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, “Design of space-variant diffractive polarization elements,” J. Opt. Soc. Am. A 20(2), 282–289 (2003).
[Crossref] [PubMed]

H. Hong and T. Zhang, “Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths,” Opt. Eng. 42(12), 3471–3486 (2003).
[Crossref]

2001 (1)

1999 (1)

1997 (1)

1989 (1)

Adams, A.

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Almeida, E.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Arbabi, E.

Armin, A.

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

Astilean, S.

Avayu, O.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Bar-David, J.

J. Bar-David, L. Stern, and U. Levy, “Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors,” Nano Lett. 17(2), 1127–1131 (2017).
[Crossref] [PubMed]

Bomzon, Z.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Buralli, D. A.

Burn, P. L.

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

Cambril, E.

Capasso, F.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Chae, E.

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Chavel, P.

Chen, W. T.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Cheong, H.

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Christiansen, A. B.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Clausen, J. S.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Desiatov, B.

Devlin, R. C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

Ellenbogen, T.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Fainman, Y.

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Grajower, M.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

Hasman, E.

Hojlund-Nielsen, E.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Hong, H.

H. Hong and T. Zhang, “Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths,” Opt. Eng. 42(12), 3471–3486 (2003).
[Crossref]

Honkanen, M.

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Horowitz, M.

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

Hubel, P. M.

P. M. Hubel, “Foveon Technology and the Changing Landscape of Digital Cameras,” in Proc. Thirteen. IS&T Color Imaging Conf. p. 314–317 (2005).

Hugonin, J. P.

Jo, G.

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Kamali, S. M.

Kanhaiya, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Karlovic, I.

I. Tomić and I. Karlović, “Practical assessment of veiling glare in camera lens system,” J. Graph. Eng. Des. 5, 23–28 (2014).

Kats, M. A.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Kettunen, V.

Khorasaninejad, M.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Kim, H. C.

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Kleiner, V.

Kristensen, A.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Lalanne, P.

Launois, H.

Lee, E.

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Lerman, G. M.

Levoy, M.

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

Levy, U.

Lin, Q.

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Mazurski, N.

Meredith, P.

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Morris, G. M.

Mortensen, N. A.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Nagy, J. G.

Oh, J.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

Paik, J.

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Pang, L.

Paniagua-Dominguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Pauca, V. P.

Plemmons, R. J.

Prior, Y.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Rousso, D.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

Sanjeev, V.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Shi, Z.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Stern, L.

J. Bar-David, L. Stern, and U. Levy, “Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors,” Nano Lett. 17(2), 1127–1131 (2017).
[Crossref] [PubMed]

Taha, H.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Talvala, E.

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

Tervo, J.

Tomic, I.

I. Tomić and I. Karlović, “Practical assessment of veiling glare in camera lens system,” J. Graph. Eng. Des. 5, 23–28 (2014).

Torgersen, T. C.

Tsai, C. H.

Tsai, C.-H.

Turunen, J.

Yazdi, S.

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Zaidi, A.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Zhang, T.

H. Hong and T. Zhang, “Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths,” Opt. Eng. 42(12), 3471–3486 (2003).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

ACM Trans. Graph. (1)

E. Talvala, A. Adams, M. Horowitz, and M. Levoy, “Veiling glare in high dynamic range imaging,” ACM Trans. Graph. 26(3), 37 (2007).
[Crossref]

Appl. Opt. (1)

J. Graph. Eng. Des. (1)

I. Tomić and I. Karlović, “Practical assessment of veiling glare in camera lens system,” J. Graph. Eng. Des. 5, 23–28 (2014).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

Laser Photonics Rev. (2)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths : past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2pi phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Nano Lett. (5)

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic Metasurface Lens at Telecommunication Wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

J. Bar-David, L. Stern, and U. Levy, “Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors,” Nano Lett. 17(2), 1127–1131 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Nat. Commun. (3)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref] [PubMed]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite Functional Metasurfaces for Multispectral Achromatic Optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nat. Photonics 9(10), 687–694 (2015).
[Crossref]

Opt. Eng. (1)

H. Hong and T. Zhang, “Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths,” Opt. Eng. 42(12), 3471–3486 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Optica (2)

Science (2)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Science (80-.). (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science (80-.). 352, 1190–1194 (2016).

Sensors (Basel) (1)

H. Cheong, E. Chae, E. Lee, G. Jo, and J. Paik, “Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor,” Sensors (Basel) 15(1), 880–898 (2015).
[Crossref] [PubMed]

Other (16)

P. M. Hubel, “Foveon Technology and the Changing Landscape of Digital Cameras,” in Proc. Thirteen. IS&T Color Imaging Conf. p. 314–317 (2005).

J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).

J. Wilson and J. Hawkes, Optoelectronics: An Introduction (Prentice Hall, 1998).

E. Parzen, Modern Probability Theory and Its Applications (Wiley, 1960).

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (SPIE Press, 2011).

G. C. Holst, Testing and Evaluation of Imaging Infrared Systems (SPIE, 2008).

G. C. Holst, Electro-Optical Imaging System Performance, 5th Ed. (SPIE, 2008).

Y. Zhang, J. Dai, and W. Li, “Measurement of minimum resolvable contrast based on human visual property,” in International Symposium on Instrumentation Science and Technology, J. Tan and X. Wen, eds. (2008), Vol. 7133, p. 71333V.
[Crossref]

R. C. González and R. E. Woods, “Digital Image Processing 2nd Edition,” in Prentice Hall (2002).

Electro-Optics Handbook (Burle Industries Inc., 1974).

J. C. Wyant and K. Creath, Basic Wavefront Aberration Theory for Optical Metrology in Applied Optics and Optical Engineering Vol. XI (Academic Press, 1992).

D. D. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Praather, Diffractive Optics (SPIE Press, 2003).

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

L. Levi, Applied Optics Vol. 1 (Wiley, 1966).

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Longitudinal and transverse axial chromatic aberration.
Fig. 2
Fig. 2 (a) Diffraction LSF (b) Geometrical LSF, obtained by weighted summing of the top-hat LSFs for each of the sampling wavelengths within the spectral range. (c) Convolution result of (a) and (b), which is the physical (‘true’) LSF used to calculate the MTF.
Fig. 3
Fig. 3 LSF for metalens from [13] (f = 0.725mm, D = 2mm), for 100nm spectral range, centered at 530nm wavelength.
Fig. 4
Fig. 4 MTF for metalens from [13] (f = 0.725mm, D = 2mm) (red line), for 100nm spectral range, centered at 530nm wavelength, compared to diffraction limit (blue line).
Fig. 5
Fig. 5 Metalens (f = 1mm, D = 1mm) MTF, for different spectral widths, centered at 550nm wavelength.
Fig. 6
Fig. 6 Metalens (f = 1mm, D = 1mm) spectral SNR, for different spectral widths, centered at 550nm wavelength.
Fig. 7
Fig. 7 Metalens ASNR, as a function of spectral range Δλ (centered at 550nm) and F#. The absolute value represented by the colors in the figure is quite low, since it was calculated for low-light conditions, but the shape of the graph is dependent only on the system parameters. The dashed black line shows the spectral range that gives the maximum ASNR for each F#.
Fig. 8
Fig. 8 Computer simulations showing image quality for a metalens system, operating at F/1, 1µm pixel, and 550nm central wavelength. Spectral ranges are (a) 1nm (b) 5nm (c) 50nm. Images (d)-(f) are for the same spectral ranges, after Wiener de-convolution. The figure clearly shows the importance of metalens parameter optimization.
Fig. 9
Fig. 9 Number of electrons per pixel, as a function of metalens spectral range (centered at 550nm) and F#, for pixel size 1µm, spectral irradiance 1.4 W/(m2·µm), and 4ms exposure time, assuming perfect transmission and quantum efficiency. For the optimum ASNR determined by Fig. 6 to be valid, we must have log(no. of electrons) >3. This value is not even on the graph. However, for ‘full daylight’ conditions the graph needs to be scaled by a factor of 100, so the value of 1 on the graph will become 3. For lower illumination, dark noise must be added to the model.
Fig. 10
Fig. 10 Transverse lateral chromatic aberration.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δf=f Δλ λ
TAC=Δftan( u )=Δf D 2f = Δλ λ D 2
E i =πτΔλ R λ sin 2 ( u' )πτΔλ R λ ( D 2f ) 2
S=ηAt E i λ hc
SNR= S S   = S D Δλ
f=h/sinθ
MRTD( v )=K NETD MTF( v )
SSNR( v )=SNRMTF( v )
ASNR= 0 f nq SNRMTF( ν )dv , f nq = 1 2pixel_pitch
TLC=TAC y p /y
TLC=TACstanθ/y= Δλ λ stanθ
TLC= Δλ λ ftanθ=Δftanθ
TSC= 1 2 ( y f ) 2 tanθ( sf )
TA= y f 2 tan 2 θ ( sf ) 2

Metrics