Abstract

We reveal a triangular-lattice planar photonic crystal supports Bloch modes with radially and azimuthally symmetric electric field distributions at the top band-edge of the first photonic band. Bifurcated from the corresponding Bloch modes, two cylindrical vector resonant modes are achieved by simply enlarging the central air-hole of the planar photonic crystal, which have high quality factors around 3,000 and small mode volume of (λ/n)3. The far-field radiations of the two resonant modes present high-quality cylindrical vector beam profiles. The resonant modes could be optimized by modifying the six nearest neighboring air-holes around the central defect. The cylindrically symmetric characteristics of the resonant mode’s near- and far-fields might provide a new view to investigate light-matter interactions and device developments in planar photonic crystal cavities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects

Chenyang Zhao, Xuetao Gan, Sheng Liu, Yan Pang, and Jianlin Zhao
Opt. Express 22(8) 9360-9367 (2014)

High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity

Han-Youl Ryu, Masaya Notomi, Guk-Hyun Kim, and Yong-Hee Lee
Opt. Express 12(8) 1708-1719 (2004)

Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors

Snjezana Tomljenovic-Hanic, Adel Rahmani, M. J. Steel, and C. Martijn de Sterke
Opt. Express 17(17) 14552-14557 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed (Princeton University Press, 2008).
  2. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
    [Crossref]
  3. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
    [Crossref]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  5. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  6. X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
    [Crossref] [PubMed]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  8. X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39(24), 6973–6976 (2014).
    [Crossref] [PubMed]
  9. K. Fasihi, “High-contrast all-optical controllable switching and routing in nonlinear photonic crystals,” J. Lightwave Technol. 32(18), 3126–3131 (2014).
    [Crossref]
  10. K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
    [Crossref]
  11. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18(25), 26613–26624 (2010).
    [Crossref] [PubMed]
  12. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
    [Crossref]
  13. U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
    [Crossref] [PubMed]
  14. K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
    [Crossref]
  15. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref] [PubMed]
  16. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
    [Crossref]
  17. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  18. T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
    [Crossref]
  19. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  20. M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
    [Crossref] [PubMed]
  21. J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
    [Crossref] [PubMed]
  22. M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stirring nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
    [Crossref] [PubMed]
  23. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  24. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
    [Crossref] [PubMed]
  25. I. Moreno, J. A. Davis, I. Ruiz, and D. M. Cottrell, “Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating,” Opt. Express 18(7), 7173–7183 (2010).
    [Crossref] [PubMed]
  26. C. Zhao, X. Gan, S. Liu, Y. Pang, and J. Zhao, “Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects,” Opt. Express 22(8), 9360–9367 (2014).
    [Crossref] [PubMed]

2014 (4)

2013 (2)

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

2012 (5)

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (3)

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stirring nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

2005 (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

2004 (2)

2003 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

2002 (1)

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Andreani, L. C.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

Badolato, A.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Bonaccorso, F.

Bosch, S.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Chow, E.

Clevenson, H.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

Cottrell, D. M.

Cui, K.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Davis, J. A.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Donato, M. G.

Englund, D.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fasihi, K.

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Feng, X.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Ferrari, A. C.

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Galli, M.

Gan, X.

C. Zhao, X. Gan, S. Liu, Y. Pang, and J. Zhao, “Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects,” Opt. Express 22(8), 9360–9367 (2014).
[Crossref] [PubMed]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

Ge, X.

Gerace, D.

Gibbs, H. M.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Girolami, G.

Gogna, P.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Grot, A.

Gucciardi, P. G.

Guizzetti, G.

Hashimoto, J.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

He, S.

Hendrickson, J.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Huang, Y.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Ide, T.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

Imamoglu, A.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Iwahashi, S.

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Jones, P. H.

Kang, J. H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Khankhoje, U. K.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Khitrova, G.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Kim, S. H.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Kitamura, K.

Krauss, T. F.

Kurosaka, Y.

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Li, L.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

Li, Y.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Liu, J.

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

Liu, S.

Liu, T.

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Maragò, O. M.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Mirkarimi, L. W.

Moreno, I.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Noda, S.

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Nozaki, K.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

O’Faolain, L.

Ochiai, T.

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stirring nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

Olitzky, J. D.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Onoda, M.

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stirring nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

Pang, Y.

Petroff, P. M.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Prather, D. W.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Qiu, Y.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Reese, C.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Richards, B. C.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Ruiz, I.

Sakai, K.

Sancho-Parramon, J.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

Sayed, R.

Scherer, A.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Shi, Y.

Sigalas, M.

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Sweet, J.

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Takayama, N.

Tan, J.

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tsai, C. C.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

Vasi, S.

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Wang, C. F.

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Wang, D.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

Welna, K.

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Yoshie, T.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Zhang, W.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Zhao, C.

Zhao, J.

Zhao, Q.

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

Zheng, W. H.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

ACS Nano (1)

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Phys. Lett. (5)

K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, and W. Zhang, “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Appl. Phys. Lett. 100(20), 201102 (2012).
[Crossref]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100(12), 121116 (2012).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoǧlu, P. M. Petroff, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett. 83(18), 3650–3652 (2003).
[Crossref]

Electron. Lett. (1)

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point-shift nanolaser with ultimate small modal volume,” Electron. Lett. 41(15), 843–845 (2005).
[Crossref]

J. Lightwave Technol. (1)

Nanotechnology (1)

U. K. Khankhoje, S. H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21(6), 065202 (2010).
[Crossref] [PubMed]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stirring nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3(1), 2145 (2013).
[Crossref] [PubMed]

Science (1)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cylindrical vector Bloch modes in the PPC. (a) Schematic of the PPC structure with a triangular lattice of air-holes; (b) Photonic band structure of the PPC, where the red point represents the position of the two degenerated cylindrical vector Bloch modes and the green lines represent light cone; Inset displays the Brillouin zone with definitions of Γ, K, and M points; Black asterisk and black point indicate the frequencies of resonant modes in Fig. 2; (c-d) Electric field intensity of the (c) azimuthal and (d) radial Bloch modes with the zoomed images shown in the right column, where the black arrows indicate the electric field directions.
Fig. 2
Fig. 2 Resonant modes in a PPC cavity with an enlarged central air-hole. (a1-a2) In-plane schematic of the PPC cavity; (b-c) Electric fields for (b) Mode1 and (c) Mode2, where (1)-(3) are electric field intensity, phase distributions of LH and RH circularly polarized components, respectively, and black arrows in (b1) and (c1) represent the electric filed directions.
Fig. 3
Fig. 3 Far-field radiation patterns of the cylindrical vector resonant modes. (a-b) Electric field for (a) Mode1 and (b) Mode2, where (1)-(3) are electric field intensity, LH and RH circularly polarized components’ phase distributions, respectively, and black arrows in (a1) and (b1) represent the electric filed directions; (c-d) Polarization states of (c) Mode1 and (d) Mode2 in far-field, where the short lines and background denote orientation of major axis and ellipticity of polarization ellipse, respectively.
Fig. 4
Fig. 4 (a) Q factors, (b) resonant wavelengths and (c) mode volumes of the two resonant modes with respect to the radius (R) of the central air-hole.
Fig. 5
Fig. 5 Resonant modes in modified PPC cavity with seven enlarged air-holes. (a) In-plane schematic of the PPC cavity with seven enlarged air-holes; (b-c) Electric field intensity distributions of the (b) azimuthal and (c) radial vector resonant modes; (d) Q factors and mode volumes of the two resonant modes with respect to the radius of the seven enlarged air-holes; (e-f) Far-field radiation patterns for the two resonant modes, where black arrows represent electric filed directions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = E x e ^ x + E y e ^ y = ( E x i E y ) ( e ^ x + i e ^ y ) / 2 + ( E x +i E y ) ( e ^ x i e ^ y ) / 2
E = A exp [ i( φ + π / 2 ) ] ( e ^ x + i e ^ y ) / 2 + A exp [ i( φ + π / 2 ) ] ( e ^ x i e ^ y ) / 2 = A ( sin φ e ^ x + cos φ e ^ y )
E = A exp [ i ( 2 φ 2 π / 3 ) ] ( e ^ x + i e ^ y ) / 2 + A exp [ i ( 2 φ π / 3 ) ] ( e ^ x i e ^ y ) / 2

Metrics