Abstract

Three types of anatase TiO2, graphene-TiO2, TiO2-graphene composites (G/TiO2) were developed, synthesized via a combination of simple sol-gel self-assembly method and additional thermal annealing process. Their structures and properties are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectrum analysis. In addition, Raman spectra of TiO2 and graphene, the band shift and intensity of G and 2D band were analyzed, in order to verify the mutual coupling between TiO2 and graphene. Combined Raman mapping with AFM analysis, the agglomeration effect of TiO2 nanoparticles was figured out by quantitative analysis. Finally, the photo-catalytic properties of three kinds of composites were experimentally studied via Raman mapping measurements. The results reveal that graphene with high electron mobility, as an acceptor through interfacial interactions, was certificated to enhance the photo-catalytic effect of TiO2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SERS and the photo-catalytic performance of Ag/TiO2/graphene composites

Xiaolei Zhang, Ning Wang, Ruijia Liu, Xinyu Wang, Yong Zhu, and Jie Zhang
Opt. Mater. Express 8(4) 704-717 (2018)

ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates

Jie Zhang, Xiaolei Zhang, Yimin Ding, and Yong Zhu
Appl. Opt. 55(32) 9105-9112 (2016)

Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering

Zhang Jie, Yin Zenghe, Gong Tiancheng, Luo Yunfei, Wei Dapeng, and Zhu Yong
Opt. Express 26(17) 22432-22439 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  3. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
    [Crossref] [PubMed]
  4. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  6. N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
    [Crossref]
  7. O. Akhavan and E. Ghaderi, “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
    [Crossref]
  8. Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
    [Crossref]
  9. D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
    [Crossref] [PubMed]
  10. M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
    [Crossref] [PubMed]
  11. J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
    [Crossref]
  12. J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
    [Crossref] [PubMed]
  13. X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
    [Crossref] [PubMed]
  14. Z. Jie, W. Xinyu, Z. Pengyue, Q. Jiamin, and Z. Yong, “Surface-enhanced Raman scattering activities of graphene-wrapped Cu particles by chemical vapor deposition assisted with thermal annealing,” Opt. Express 24(21), 24551–24566 (2016).
    [Crossref] [PubMed]
  15. T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
    [Crossref]
  16. T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  17. J. Zhang, X. Zhang, Y. Ding, and Y. Zhu, “ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates,” Appl. Opt. 55(32), 9105–9112 (2016).
    [Crossref] [PubMed]
  18. J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
    [Crossref] [PubMed]
  19. X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
    [Crossref]
  20. B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
    [Crossref] [PubMed]
  21. F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express 24(23), 25922–25932 (2016).
    [Crossref] [PubMed]
  22. J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
    [Crossref] [PubMed]
  23. Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
    [Crossref] [PubMed]
  24. Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
    [Crossref] [PubMed]
  25. H. J. Huang, S. Y. Zhen, P. Y. Li, S. D. Tzeng, and H. P. Chiang, “Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction,” Opt. Express 24(14), 15603–15608 (2016).
    [Crossref] [PubMed]
  26. K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
    [Crossref]
  27. O. Akhavan and E. Ghaderi, “Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
    [Crossref]
  28. Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
    [Crossref]
  29. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
    [Crossref]
  30. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
    [Crossref]
  31. V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
    [Crossref]
  32. J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
    [Crossref] [PubMed]
  33. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
    [Crossref]
  34. W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
    [Crossref]
  35. Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
    [Crossref] [PubMed]
  36. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).
  37. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
    [Crossref] [PubMed]
  38. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
    [Crossref] [PubMed]
  39. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
    [Crossref] [PubMed]
  40. S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
    [Crossref] [PubMed]
  41. X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
    [Crossref]
  42. U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48(5–8), 53–229 (2003).
    [Crossref]
  43. X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
    [Crossref] [PubMed]
  44. R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
    [Crossref] [PubMed]
  45. Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
    [Crossref]
  46. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
    [Crossref]
  47. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
    [Crossref] [PubMed]
  48. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
    [Crossref] [PubMed]
  49. J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
    [Crossref]
  50. Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
    [Crossref] [PubMed]

2016 (8)

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Z. Jie, W. Xinyu, Z. Pengyue, Q. Jiamin, and Z. Yong, “Surface-enhanced Raman scattering activities of graphene-wrapped Cu particles by chemical vapor deposition assisted with thermal annealing,” Opt. Express 24(21), 24551–24566 (2016).
[Crossref] [PubMed]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express 24(23), 25922–25932 (2016).
[Crossref] [PubMed]

J. Zhang, X. Zhang, Y. Ding, and Y. Zhu, “ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates,” Appl. Opt. 55(32), 9105–9112 (2016).
[Crossref] [PubMed]

H. J. Huang, S. Y. Zhen, P. Y. Li, S. D. Tzeng, and H. P. Chiang, “Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction,” Opt. Express 24(14), 15603–15608 (2016).
[Crossref] [PubMed]

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

2015 (3)

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

2014 (3)

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
[Crossref] [PubMed]

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

2013 (5)

M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

2012 (7)

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

2011 (3)

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

2010 (4)

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

2009 (5)

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (4)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

2007 (2)

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (2)

V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
[Crossref]

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48(5–8), 53–229 (2003).
[Crossref]

2000 (1)

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

1978 (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Abate, A.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Akhavan, O.

O. Akhavan and E. Ghaderi, “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

Alexander-Webber, J. A.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

An, J.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Arpiainen, S.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Bahnemann, D.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Baik, J. H.

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

Ball, J. M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Barea, E. M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Basko, D. M.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Biró, L. P.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Bisquert, J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Bonetti, A.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Bonini, N.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Byrne, J. A.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Cai, G.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Casiraghi, C.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, J.

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

Chen, Q.

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Chen, S. M.

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Chen, Y.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Chen, Z.

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Cheng, B.

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

Cheng, H.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Chiang, H. P.

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Dai, Q.

V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
[Crossref]

Dai, Z.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Deák, A.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Diebold, U.

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48(5–8), 53–229 (2003).
[Crossref]

Ding, F.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Ding, G.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Ding, H.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Ding, Y.

Dörr, K.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dunlop, P. S. M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Falaras, P.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Fan, T.

Feng, Z.

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

Fernandez-Garcia, R.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Galiotis, C.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Gao, Y.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Geim, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ghaderi, E.

O. Akhavan and E. Ghaderi, “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

Gong, T. C.

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, L.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Hamilton, J. W. J.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Han, X.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

He, Y.

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Heeg, S.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Herklotz, A.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Huang, H. J.

Huang, J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Huang, Q. W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Hwang, C.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Ibrahim, S.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Jalil, R.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Jang, M.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Jaroniec, M.

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Ji, H.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Ji, W.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Jiamin, Q.

Jiang, C.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jie, Z.

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Kertész, K.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Kong, W. Y.

Kontos, A. G.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Lai, C.

Lazzeri, M.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Leong, K. H.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Li, C.

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

Li, J.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Li, M.

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

Li, P. Y.

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, Y.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Li, Y. Y.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Liang, F. X.

Lim, T. T.

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Ling, X.

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Lipsanen, H.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Liu, C.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

Liu, L.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Liu, X.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

Liu, Z.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Lombardi, J. R.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Lombardo, A.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Luo, L. B.

Luo, S.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

Lv, X.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Ma, J.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Maier, S. A.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Mao, H.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Mao, Z.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Marzari, N.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Mauri, F.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Mei, F.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Mei, Y.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Mohiuddin, T. M. G.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Molnár, G.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Mora-Sero, I.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Muddle, B. C.

V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
[Crossref]

Nair, R. R.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Narula, R.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Naumenko, D.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Nicholas, R. J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Nolan, N. T.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Novoselov, K. S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Oikonomou, A.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Osváth, Z.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Pan, G.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Pan, X. Y.

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

Park, S.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Pelaez, M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Pengyue, Z.

Perera, C. J.

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

Pillai, S. C.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Pu, X.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Qiu, B.

B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
[Crossref] [PubMed]

Quan, J.

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Quan, J. M.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Rastelli, A.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Reich, S.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Ren, F.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Ren, W. J.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Ruan, W.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Saliba, M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Saravanan, P.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Savini, G.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Schedin, F.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Schmidt, O. G.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Seery, M. K.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Shan, Y.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Shao, X.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Sharma, R.

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

Shea, K. O.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Sim, L. C.

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Snaith, H. J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Snitka, V.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Snopok, B.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Song, W. L.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Stoller, M. D.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Strano, M. S.

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

Su, B. L.

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

Swamy, V.

V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
[Crossref]

Tang, Y.

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Tian, S. Q.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Tzeng, S. D.

Vértesy, G.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Vijayaraghavan, A.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Wang, J.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Wang, J. T.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Wang, J. Z.

Wang, N.

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

Wang, W.

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

Wang, X.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Wang, X. X.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Wang, X. Y.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

Wang, Y.

F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express 24(23), 25922–25932 (2016).
[Crossref] [PubMed]

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Wei, J.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Wen, Y.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Wu, W.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Xiang, Q.

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Xiao, W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Xiao, X.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Xie, C. S.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Xie, W. B.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Xing, M.

B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
[Crossref] [PubMed]

Xinyu, W.

Xu, J.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Xu, Y. J.

M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

Xue, X.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Yang, L.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Yang, M. Q.

M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

Yin, S.

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Yin, Z.

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Yong, Z.

Yu, J.

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

Zámbó, D.

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Zeng, D. W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Zhang, D.

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

Zhang, D. Y.

Zhang, H.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Zhang, J.

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, X. Zhang, Y. Ding, and Y. Zhu, “ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates,” Appl. Opt. 55(32), 9105–9112 (2016).
[Crossref] [PubMed]

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
[Crossref] [PubMed]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

Zhang, M.

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Zhang, N.

M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Zhang, S.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Zhang, X.

J. Zhang, X. Zhang, Y. Ding, and Y. Zhu, “ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates,” Appl. Opt. 55(32), 9105–9112 (2016).
[Crossref] [PubMed]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Zhang, X. L.

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Y. H.

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

Zhang, Z. X.

Zhao, B.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

Zhao, Y.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Zhen, S. Y.

Zhou, J.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Zhu, Y.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, X. Zhang, Y. Ding, and Y. Zhu, “ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates,” Appl. Opt. 55(32), 9105–9112 (2016).
[Crossref] [PubMed]

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

M. Q. Yang, N. Zhang, and Y. J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

ACS Catal. (1)

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded graphene/TiO2 composites based on the effective interfacial charge transfer through the C–Ti Bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

ACS Nano (1)

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Analyst (Lond.) (1)

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

APL Mater. (1)

K. H. Leong, L. C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, and P. Saravanan, “Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis,” APL Mater. 3(10), 104503 (2015).
[Crossref]

Appl. Catal. B (1)

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. Swamy, B. C. Muddle, and Q. Dai, “Size-dependent modifications of the Raman spectrum of rutile TiO2,” Appl. Phys. Lett. 89(16), 163118 (2006).
[Crossref]

Appl. Surf. Sci. (1)

X. Y. Wang, N. Wang, T. C. Gong, Y. Zhu, and J. Zhang, “Preparation of graphene-Ag nanoparticles hybrids and their SERS activities,” Appl. Surf. Sci. 387, 707–719 (2016).
[Crossref]

Carbon (4)

Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, and J. Ma, “Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange,” Carbon 50(11), 4093–4101 (2012).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, X. L. Zhang, S. M. Chen, T. C. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

B. Qiu, M. Xing, and J. Zhang, “Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries,” J. Am. Chem. Soc. 136(16), 5852–5855 (2014).
[Crossref] [PubMed]

J. Mater. Chem. (1)

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

J. Mater. Sci. (1)

Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, “Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array,” J. Mater. Sci. 48(18), 6203–6211 (2013).
[Crossref]

J. Phys. Chem. B (1)

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, “UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk,” J. Phys. Chem. B 110(2), 927–935 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (5)

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” J. Phys. Chem. C 116(15), 8792–8797 (2012).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

N. Zhang, Y. H. Zhang, X. Y. Pan, M. Q. Yang, and Y. J. Xu, “Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation,” J. Phys. Chem. C 116(34), 18023–18031 (2012).
[Crossref]

O. Akhavan and E. Ghaderi, “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation,” J. Phys. Chem. C 113(47), 20214–20220 (2009).
[Crossref]

J. Yu, W. Wang, B. Cheng, and B. L. Su, “Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment,” J. Phys. Chem. C 113(16), 6743–6750 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

J. Raman Spectrosc. (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Nano Lett. (6)

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref] [PubMed]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, “Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries,” Nano Lett. 10(2), 398–405 (2010).
[Crossref] [PubMed]

Nanoscale (4)

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania Nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene Nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Q. Xiang, J. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets,” Nanoscale 3(9), 3670–3678 (2011).
[Crossref] [PubMed]

Z. Osváth, A. Deák, K. Kertész, G. Molnár, G. Vértesy, D. Zámbó, C. Hwang, and L. P. Biró, “The structure and properties of graphene on gold nanoparticles,” Nanoscale 7(12), 5503–5509 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198–201 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B Condens. Matter (1)

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, and N. Marzari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation,” Phys. Rev. B Condens. Matter 79(20), 196–198 (2008).

Phys. Rev. Lett. (1)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Small (1)

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48(5–8), 53–229 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Preparation of TiO2, G-TiO2 and TiO2-G samples.
Fig. 2
Fig. 2 Photo-catalytic experiments process of all the samples.
Fig. 3
Fig. 3 SEM images of (a) TiO2, with the inset showing the TEM image of TiO2 nanoparticles; (b) HRTEM image of a TiO2 nanoparticles, with the inset showing the corresponding SAED patterns; SEM images of (c) TiO2-G and (d) G-TiO2 substrate (the yellow dotted line represents the border of graphene sheets) after annealing process; (e) XRD spectrum of TiO2; EDS analysis of (f) TiO2-G and (g) G-TiO2, the distribution diagram of element for Ti, O and C is given out accordingly.
Fig. 4
Fig. 4 The Raman contour plot and Raman mappings of the 256 data sets on (a1) TiO2 and (b1) G-TiO2 and (c1) TiO2-G substrate; the averaged Raman spectra of (a2) TiO2, (b2) G-TiO2 and (c2) TiO2-G substrate obtained from Raman mapping analysis.
Fig. 5
Fig. 5 The position histograms and the corresponding Gaussian fitting curves of (a) G and (b) 2D band for TiO2, G-TiO2 and TiO2-G substrate.
Fig. 6
Fig. 6 Raman intensity mapping of TiO2 Raman characteristic peak at 140 cm−1 on (a) TiO2, (b) G-TiO2 and (c) TiO2-G samples; (d) the intensity histograms of TiO2 intensity with Gaussian fitting curves for the three samples.
Fig. 7
Fig. 7 (a) AFM image of TiO2-G substrate in mapping area, (b) the enlarged views and agglomeration profiles of marks in the AFM image, (c) the volume distribution of TiO2 agglomerates at each mapping point, and (d) the relationship of TiO2 intensity at 140 cm−1 and volume of agglomerates on TiO2-G substrate.
Fig. 8
Fig. 8 Photo-catalytic activities of (a) TiO2, (b) TiO2-G and (c) G-TiO2 as a function of time for degradation of R6G under UV-light illumination; (d) the relationship between R6G intensity and illumination time of UV-light: the vertical axis is the normalized intensity and the first one hour from −1 h to 0 h is for dark treatment.
Fig. 9
Fig. 9 (a) Energy level structure of G/TiO2 composites, (b) reaction process, where ROS and M + • represent the reactive oxygen species and oxidation products.

Metrics