Abstract

Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon’s high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to −6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel’s thermo-optic value in order to obtain an athermal device in a wide temperature range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR

Brian A. Rose, Ashley J. Maker, and Andrea M. Armani
Opt. Mater. Express 2(5) 671-681 (2012)

Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, and Jinsong Xia
Photon. Res. 6(7) 686-691 (2018)

Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation

Shaoqi Feng, Kuanping Shang, Jock T. Bovington, Rui Wu, Binbin Guan, Kwang-Ting Cheng, John E. Bowers, and S. J. Ben Yoo
Opt. Express 23(20) 25653-25660 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
    [Crossref]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [Crossref]
  3. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  4. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
    [Crossref] [PubMed]
  5. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
    [Crossref]
  6. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
    [Crossref]
  7. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 1–14 (2014).
    [Crossref]
  8. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999 (2012).
    [Crossref] [PubMed]
  9. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342 (2013).
    [Crossref] [PubMed]
  10. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279 (2014).
    [Crossref] [PubMed]
  11. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  12. K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40, 2641 (2015).
    [Crossref] [PubMed]
  13. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18, 1879 (2010).
    [Crossref] [PubMed]
  14. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487 (2010).
    [Crossref] [PubMed]
  15. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253 (2012).
    [Crossref] [PubMed]
  16. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599 (2009).
    [Crossref] [PubMed]
  17. Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
    [Crossref]
  18. Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
    [Crossref]
  19. Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).
  20. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
    [Crossref]
  21. J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
    [Crossref] [PubMed]
  22. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627 (2009).
    [Crossref] [PubMed]
  23. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
    [Crossref]
  24. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631 (2010).
    [Crossref] [PubMed]
  25. M. M. Milošević, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36, 4659 (2011).
    [Crossref]
  26. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958 (2013).
    [Crossref] [PubMed]
  27. S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. J. Ben Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3μm wavelength operation,” Opt. Express 23, 25653 (2015).
    [Crossref] [PubMed]
  28. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557 (2013).
    [Crossref] [PubMed]
  29. Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
    [Crossref]
  30. R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
    [Crossref] [PubMed]
  31. T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
    [Crossref]
  32. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [Crossref]
  33. E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
    [Crossref]
  34. E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
    [Crossref]
  35. E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
    [Crossref]
  36. A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
    [Crossref]
  37. S. Namnabat, K. Kim, and R. A. Norwood, “Passive athermal silicon ring resonators with sol-gel claddings,” in Optical Fiber Communication Conference, (Optical Society of America, 2016) p. Tu2F.3.
    [Crossref]
  38. W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
    [Crossref]
  39. A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
    [Crossref]
  40. E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
    [Crossref]
  41. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
    [Crossref]
  42. O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
    [Crossref]
  43. K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
    [Crossref]

2015 (6)

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
[Crossref] [PubMed]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40, 2641 (2015).
[Crossref] [PubMed]

S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. J. Ben Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3μm wavelength operation,” Opt. Express 23, 25653 (2015).
[Crossref] [PubMed]

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

2014 (5)

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279 (2014).
[Crossref] [PubMed]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 1–14 (2014).
[Crossref]

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (1)

2010 (3)

2009 (4)

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599 (2009).
[Crossref] [PubMed]

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627 (2009).
[Crossref] [PubMed]

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

2008 (2)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[Crossref]

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
[Crossref] [PubMed]

2007 (2)

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

2006 (2)

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

2005 (1)

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

2004 (1)

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

2003 (3)

E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
[Crossref]

E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
[Crossref]

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

2002 (2)

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
[Crossref]

2000 (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
[Crossref]

1998 (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).

1994 (1)

Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
[Crossref]

1993 (1)

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
[Crossref]

Ackert, J. J.

Adikaari, A. A. D. T.

Ahn, H.

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Almeida, V. R.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

Bae, B.-S.

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
[Crossref]

E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
[Crossref]

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
[Crossref]

Bae, J. Y.

E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
[Crossref]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Baets, R.

Bakir, B. B.

Basak, J.

Ben Yoo, S. J.

Bergman, K.

Bhola, B.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Bilal, K.

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

Bogaerts, W.

Bovington, J. T.

Bowers, J. E.

Calhoun, D.

Cardenas, J.

Chan, Eric

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Chan, J.

Chen, L.

Chen, X.

Cheng, K.-T.

Cheung, S. T. S.

Cox, J. A.

Cui, J.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Deng, Q.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Djordjevic, S. S.

Dumon, P.

Ellis, B.

K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
[Crossref]

Emerson, N. G.

Enami, Y.

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

Fegadolli, W. S.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

Feng, S.

Ferrotti, T.

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Funato, N.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
[Crossref]

Gardes, F. Y.

Gondarenko, A.

Guan, B.

Guha, B.

Han, X.

Harduin, J.

Hassan, K.

Hendry, R.

Hiltunen, M.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

Himmelhuber, R.

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Hu, J.

Izuhara, T.

Jen, a. K. Y.

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

Jian, X.

Kang, E.-S.

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
[Crossref]

E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
[Crossref]

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
[Crossref]

Karioja, P.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

Kawazu, M.

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

Khan, S. U.

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

Kim, D.-J.

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
[Crossref] [PubMed]

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Kim, G.

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
[Crossref] [PubMed]

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Kim, G.-H.

Kim, K.

S. Namnabat, K. Kim, and R. A. Norwood, “Passive athermal silicon ring resonators with sol-gel claddings,” in Optical Fiber Communication Conference, (Optical Society of America, 2016) p. Tu2F.3.
[Crossref]

Kim, K.-J.

Kim, K.-S.

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

Kim, W.-S.

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

Kimerling, L.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[Crossref]

Knights, A. P.

Kokubun, Y.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).

Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
[Crossref]

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
[Crossref]

Koshinz, D.

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Krug, W.

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Kwon, O.-K.

Kyotoku, B. B. C.

Lee, J.-M.

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
[Crossref] [PubMed]

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Lee, T.-H.

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
[Crossref]

Leite, A. P.

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

Lentine, A. L.

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Li, Q.

Li, X.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Li, Y.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Liao, L.

Lipson, M.

Lira, H. L. R.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

Liu, H.-F.

Logan, D. F.

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Mahalingam, H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

Malik, S. U. R.

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

Marques, P. V. S.

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

Mashanovich, G. Z.

Matsuura, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).

Menezo, S.

Meredith, G.

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Miloševic, M. M.

Moreira, P. J.

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

Morthier, G.

Motooka, T.

Moujoud, A.

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

Najafi, S.

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

Namnabat, S.

S. Namnabat, K. Kim, and R. A. Norwood, “Passive athermal silicon ring resonators with sol-gel claddings,” in Optical Fiber Communication Conference, (Optical Society of America, 2016) p. Tu2F.3.
[Crossref]

Nikolova, D.

Norwood, R.

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

Norwood, R. A.

S. Namnabat, K. Kim, and R. A. Norwood, “Passive athermal silicon ring resonators with sol-gel claddings,” in Optical Fiber Communication Conference, (Optical Society of America, 2016) p. Tu2F.3.
[Crossref]

Nosovitskiy, P.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

Padmaraju, K.

Park, J.-U.

E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
[Crossref]

Park, S.-H.

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Peyghambarian, N.

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

Poon, A. W.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Preston, K.

Raghunathan, V.

Rumley, S.

Saddiki, Z.

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

Samadi, P.

Scherer, A.

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Sciancalepore, C.

Seddon, A. B.

K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
[Crossref]

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Shang, K.

Shin, S.-Y.

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

Soppera, O.

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Starbuck, A. L.

Steier, W. H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Tadanaga, K.

K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
[Crossref]

Taga, S.

Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
[Crossref]

Takizawa, M.

Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
[Crossref]

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
[Crossref]

Teng, J.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Touam, T.

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

Trotter, D. C.

Uenuma, M.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Wu, R.

Ye, W. N.

Yin, B.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Yoneda, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).

Yoo, S. J. B.

Zhang, H.

Zhang, L.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Zhang, Y.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Zhao, M.

Zhou, Z.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Zhu, X.

Zomaya, A. Y.

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

Appl. Phys. Lett. (2)

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic–organic hybrid material films,” Appl. Phys. Lett. 81, 1438 (2002).
[Crossref]

A. Moujoud, W.-S. Kim, B.-S. Bae, and S.-Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88, 101916 (2006).
[Crossref]

Electron. Lett. (1)

Y. Kokubun, S. Taga, and M. Takizawa, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223–1224 (1994).
[Crossref]

IEEE Cloud Comput. (1)

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in cloud datacenters,” IEEE Cloud Comput. 1, 10–20 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photonics Technol. Lett. 5, 1297–1300 (1993).
[Crossref]

W. S. Fegadolli, H. L. R. Lira, M. Hiltunen, P. Karioja, V. R. Almeida, and A. Scherer, “Athermal Silicon Slot Waveguide With an Ormocomp Polymer Overlayer,” IEEE Photonics Technol. Lett. 26, 1414–1417 (2014).
[Crossref]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[Crossref]

IEEE Sens. J. (1)

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[Crossref]

IEICE Trans. Electron. (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide,” IEICE Trans. Electron. E81-C, 1187–1194 (1998).

J. Light. Technol. (3)

J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Y. Enami, M. Kawazu, a. K. Y. Jen, G. Meredith, and N. Peyghambarian, “Polarization-Insensitive Transition Between Sol-Gel Waveguide and Electrooptic Polymer and Intensity Modulation for All-Optical Networks,” J. Light. Technol. 21, 2053–2060 (2003).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, Eric Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Light. Technol. 23, 4215–4221 (2005).
[Crossref]

J. Mater. Res. (1)

E.-S. Kang, J.-U. Park, and B.-S. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res. 18, 1889–1894 (2003).
[Crossref]

J. Sol-Gel Sci. Technol. (3)

E.-S. Kang, J. Y. Bae, and B.-S. Bae, “Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films,” J. Sol-Gel Sci. Technol. 26, 981–984 (2003).
[Crossref]

E.-S. Kang, W.-S. Kim, K.-S. Kim, and B.-S. Bae, “Modification of Thermo-Optic Characteristics of Sol-Gel Inorganic-Organic Hybrid Materials,” J. Sol-Gel Sci. Technol. 32, 277–280 (2004).
[Crossref]

K. Tadanaga, B. Ellis, and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived Ormosil films for photonics from tetramethoxysilane and trimethoxysilylpropylmethacrylate,” J. Sol-Gel Sci. Technol. 19, 687–690 (2000).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 1–14 (2014).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

O. Soppera, P. J. Moreira, P. V. S. Marques, and A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271, 430–435 (2007).
[Crossref]

Opt. Express (12)

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631 (2010).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958 (2013).
[Crossref] [PubMed]

S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. J. Ben Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3μm wavelength operation,” Opt. Express 23, 25653 (2015).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557 (2013).
[Crossref] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999 (2012).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342 (2013).
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279 (2014).
[Crossref] [PubMed]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
[Crossref] [PubMed]

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645 (2008).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627 (2009).
[Crossref] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18, 1879 (2010).
[Crossref] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Photonics Res. (2)

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photonics Res. 3, B10 (2015).
[Crossref]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [Invited],” Photonics Res. 3, B28 (2015).
[Crossref]

Proc. IEEE (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Sensors (1)

R. Himmelhuber, R. Norwood, Y. Enami, and N. Peyghambarian, “Sol-Gel Material-Enabled Electro-Optic Polymer Modulators,” Sensors 15, 18239–18255 (2015).
[Crossref] [PubMed]

Thin Solid Films (1)

A. Moujoud, Z. Saddiki, T. Touam, and S. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol–gel glasses,” Thin Solid Films 422, 161–165 (2002).
[Crossref]

Other (1)

S. Namnabat, K. Kim, and R. A. Norwood, “Passive athermal silicon ring resonators with sol-gel claddings,” in Optical Fiber Communication Conference, (Optical Society of America, 2016) p. Tu2F.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Waveguide cross section of the chip.
Fig. 2
Fig. 2 OADM layout and filter response: (a) layout of the optical add-drop multiplexer, (b) Simulated filter response of the OADM device.
Fig. 3
Fig. 3 Simulation results for designing: (a) thermal wavelength shifts for silicon waveguides with silica and 95/5 sol-gel cladding at TE polarization; (b) plot of thermo-optic coefficients required to achieve athermality for waveguide widths from 260 nm–325 nm with 220 nm core thickness.
Fig. 4
Fig. 4 (a) Fabrication process of the chip: the chip comes with SiO2 cladding, the silica over the rings is etched, and then this exposed region is coated with sol-gel; (b) microscope image of the fabricated device; (c) SEM image after etching the top cladding; (d) the actual chip before etching (left); the chip deposited with sol-gel (right).
Fig. 5
Fig. 5 Schematic of the measurement setup for characterizing the athermal microrings.
Fig. 6
Fig. 6 (a) Transmission spectra from Drop 1 ring with 325 nm width, 500 nm gap. The inset is a close-up look at a resonance with 0.32 nm 3-dB bandwidth and a Q of 4700. (b) Temperature dependent wavelength shifts for different drops of a sol-gel coated OADM cured at 12 hours for a 300 nm ring waveguide.
Fig. 7
Fig. 7 (a) and (b) temperature dependent wavelength shifts for ring waveguides width with 310 nm and 325 nm, respectively with silica and sol-gel claddings cured at 130°C for different times.
Fig. 8
Fig. 8 Wavelength shift comparison for OADMs with 300 nm ring widths cured at 130°C and 150°C. 11 h curing time (top) and 10.5 h curing time (bottom).
Fig. 9
Fig. 9 Polarization dependence of the temperature dependent wavelength shift (310 nm ring width, 500 nm gap) cured at 130°C for 11 h.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d λ d T = λ n g ( n eff α Si + n eff T )
n eff T Γ clad n clad T + Γ Si n Si T + Γ SiO 2 n SiO 2 T

Metrics