Abstract

We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
    [Crossref]
  2. J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
    [Crossref]
  3. L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
    [Crossref]
  4. O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
    [Crossref]
  5. S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21, 13564–13571 (2013).
    [Crossref] [PubMed]
  6. B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
    [Crossref]
  7. J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.
  8. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
    [Crossref]
  9. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.
  10. X. Lin, D. Liu, and J.-J. He, “Design and analysis of 2×2 half-wave waveguide couplers,” Appl. Opt. 48, F18–F23 (2009).
    [Crossref]
  11. T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
    [Crossref]
  12. J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11, 212–214 (1999).
    [Crossref]
  13. “ITU-T G.694.1,” International Telecommnication Union, Geneva, Switzerland.
  14. M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
    [Crossref]

2013 (1)

2009 (3)

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

X. Lin, D. Liu, and J.-J. He, “Design and analysis of 2×2 half-wave waveguide couplers,” Appl. Opt. 48, F18–F23 (2009).
[Crossref]

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

2003 (1)

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

2000 (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

1999 (1)

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11, 212–214 (1999).
[Crossref]

1993 (1)

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

1990 (1)

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[Crossref]

1982 (1)

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

Augustin, L. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Barton, J.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

Barton, J. S.

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

Baums, D.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Coldren, L. A.

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

de Vries, T.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Denbaars, S. P.

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

Dutting, K.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Fish, G. A.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

Furuya, K.

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

Gaudino, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Guo, S.

Hammerfeldt, S.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

He, J.-J.

Heaton, J. M.

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11, 212–214 (1999).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Hildebrand, O.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Idler, W.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Jenkins, R. M.

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11, 212–214 (1999).
[Crossref]

Kakitsuka, T.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Koch, T. L.

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[Crossref]

Koren, U.

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[Crossref]

Laube, G.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Leijtens, X. J. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Lin, X.

Liu, D.

Lundqvist, L.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

Mašanovic, M. L.

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

Mason, B.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

Matsuo, S.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Meng, J.

Miller, B. I.

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

Nötzel, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Oei, Y.-S.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Porta, A. La

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Rentschler, J. A.

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

Rigole, P.-J.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

Robbins, D. J.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Sarlet, G.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

Sato, T.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Schillin, M.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Segawa, T.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Shibata, Y.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Skogen, E. J.

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

Smalbrugge, B.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Smit, M. K.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

Takahashi, R.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

Wang, L.

Wesström, J.-O.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

Wünstel, K.

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Zhang, S.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

L. A. Coldren, K. Furuya, B. I. Miller, and J. A. Rentschler, “Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. QE-18, 1679–1688 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9, 1113–1117 (2003).
[Crossref]

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 12, 762–764 (2000).
[Crossref]

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11, 212–214 (1999).
[Crossref]

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21, 905–907 (2009).
[Crossref]

J. Lightwave Technol. (2)

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[Crossref]

O. Hildebrand, M. Schillin, D. Baums, W. Idler, K. Dutting, G. Laube, and K. Wünstel, “The Y-laser: A multifunctional device for optical communication systems and switching networks,” J. Lightwave Technol. 11, 2066–2075 (1993).
[Crossref]

Opt. Express (1)

Other (3)

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference, 2004, paper TuE2.

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, and R. Takahashi, “A monolithic wavelength-routing switch using double-ring-resonator-coupled tunable lasers with highly reflective mirrors,” in 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 2010.

“ITU-T G.694.1,” International Telecommnication Union, Geneva, Switzerland.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the proposed three-branch MMI laser. The functionalities of individual arms are labeled.

Fig. 2
Fig. 2

Cavity transmission spectra of (a) a FP laser, (b) a two-branch laser, and (c) a SGDBR laser.

Fig. 3
Fig. 3

The scattering parameter model of the proposed three-branch MMI laser.

Fig. 4
Fig. 4

(a) Normalized threshold modal gain difference between the main and side modes for (b) cleaved coupled cavities, (c) V-cavities, (d) two-branch cavities, and (e) three-branch cavities. The coupling ratio χ denotes the power detouring from the main cavity, as shown by the arrows. The lengths of the arms are assumed to be L2/L1 = 0.95 for (b) and (c), (L1 + LMMI + L3)/(L1 + LMMI + L2) = 0.95 for (d), and (L1 + LMMI + L4)/(L1 + LMMI + L2) = 0.95, (L1 + LMMI + L3)/(L1 + LMMI + L2) = 1.2 for (e).

Fig. 5
Fig. 5

Interference patterns (left) and their superpositions with cavity transmission (right) between Arms 2 and 4 with (a) x = 0.95 and (b) x = 1.2, and (c) those between Arms 2, 3, and 4 with (L1 + LMMI + L4)/(L1 + LMMI + L2) = 0.95 and (L1 + LMMI + L3)/(L1 + LMMI + L2) = 1.2.

Fig. 6
Fig. 6

Interference pattern and cavity transmission of two three-branch MMI lasers with (a) m = 7 and (b) m = 8. (c) The normalized threshold modal gain difference near 1550 nm and (d) over the entire C-band as a function of m. The orange and green arrows show the definition of ΔGth,neighboring and ΔGth,global.

Fig. 7
Fig. 7

The resonant wavelength of the three-branch MMI laser in the case of (a) coarse tuning using Arm 2 and (b) fine tuning using Arm 3, and the associated threshold modal gain change for the two cases are plotted in (c) and (d). (e) The Arms 3–4 pair cavity transmission superimposed with the coarse interference pattern and (f) the Arms 2–4 pair cavity transmission superimposed with the fine interference pattern at different tuning levels.

Fig. 8
Fig. 8

(a) The fine tuning characteristics across the entire C-band with the coarse arm pre-biased, and (b) superimposed representation of the fine tuning with different biasing configurations. The coverage spans over the entire C-band.

Tables (1)

Tables Icon

Table 1 Bias configurations of the three-branch MMI laser.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SMSR = 2 P 0 h ν v g n sp α tot Δ ( α L ) α m , 0 L
[ a ] = ( I R ) B [ E e x ] + R B 2 [ b ]
[ b ] = S [ a ]
[ E s c ] = ( I + R ) B [ b ]
T = ( I R ) B ( I SR B 2 ) 1 S ( I + R ) B
S = [ S 11 S 12 S 13 S 14 S 21 S 22 S 23 S 24 S 31 S 32 S 33 S 34 S 41 S 42 S 43 S 44 ] = [ 0 S 12 S 13 S 14 S 21 0 0 0 S 31 0 0 0 S 41 0 0 0 ]
r 1 e G 1 + i 2 β 1 L 1 j = 2 4 S 1 j S j 1 r j e ( G j + i 2 β j L j ) = 1
S = e i ϕ 3 [ 0 e i π / 12 e i π / 4 e i π / 12 e i π / 12 0 0 0 e i π / 4 0 0 0 e i π / 12 0 0 0 ]
L 1 + L j = λ 0 2 n 0 ( m ϕ π 1 12 ) , m .
L 1 + L MMI + L 2 = λ 0 2 n 0 ( M 1 12 )
L 1 + L MMI + L 3 = λ 0 2 n 0 ( N + 1 4 )
L 1 + L MMI + L 4 = λ 0 2 n 0 ( P 1 12 )
I ( λ ) = | j e i β j L j |
L 3 L 2 L 2 L 4 = m 2 , m = 1 , 3 , 5 ,

Metrics