Abstract

We demonstrate the thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite crystal. The lifetime ratio of lower and upper levels of Er3+ in Cr,Er,Pr:GYSGG crystal is further reduced due to the optimized doping concentrations. The thermal effect of composite crystal is lower than that of Cr,Er,Pr:GYSGG crystal. A maximum pulse energy 342.8 mJ operated at 5 Hz and 2.79 μm is obtained on the composite crystal, corresponding to electrical-to-optical efficiency of 0.86% and slope efficiency of 1.08%. Under the same condition, these values on the Cr,Er,Pr:GYSGG crystal are only 315.8 mJ, 0.79% and 1.04%, respectively. Moreover, the composite crystal has also a relative high laser beam quality, exhibiting obvious advantage in reducing thermal effects and improving laser performances.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performances of a diode end-pumped GYSGG/Er,Pr:GYSGG composite laser crystal operated at 2.79 μm

Jiakang Chen, Dunlu Sun, Jianqiao Luo, Huili Zhang, Shihao Cao, Jingzhong Xiao, Hongxiang Kang, Qingli Zhang, and Shaotang Yin
Opt. Express 22(20) 23795-23800 (2014)

Growth, spectroscopy, and laser performance of a 2.79  μm Cr,Er,Pr:GYSGG radiation-resistant crystal

Jianqiao Luo, Dunlu Sun, Huili Zhang, Qiang Guo, Zhongqing Fang, Xuyao Zhao, Maojie Cheng, Qingli Zhang, and Shaotang Yin
Opt. Lett. 40(18) 4194-4197 (2015)

Laser performance of a 966  nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79  μm

Xuyao Zhao, Dunlu Sun, Jianqiao Luo, Huili Zhang, Zhongqing Fang, Cong Quan, Lunzhen Hu, Maojie Cheng, Qingli Zhang, and Shaotang Yin
Opt. Lett. 43(17) 4312-4315 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
    [Crossref]
  2. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
    [Crossref] [PubMed]
  3. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-μm tunability,” Opt. Lett. 25(11), 841–843 (2000).
    [Crossref] [PubMed]
  4. V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).
  5. P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
    [Crossref]
  6. R. C. Stoneman and L. Esterowitz, “Efficient resonantly pumped 2.8-microm Er3+:GSGG laser,” Opt. Lett. 17(11), 816–818 (1992).
    [Crossref] [PubMed]
  7. J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
    [Crossref]
  8. J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, H. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
    [Crossref] [PubMed]
  9. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref] [PubMed]
  10. J. Luo, D. Sun, H. Zhang, Q. Guo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, and S. Yin, “Growth, spectroscopy, and laser performance of a 2.79 μm Cr,Er,Pr:GYSGG radiation-resistant crystal,” Opt. Lett. 40(18), 4194–4197 (2015).
    [Crossref] [PubMed]
  11. Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
    [Crossref]
  12. W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2005), Chap. 7.
  13. J. M. Fleischer, “Laser beam width, divergence, and propagation factor: status and experience with the draft standard,” Proc. SPIE 1414, 2–11 (1991).
    [Crossref]
  14. A. E. Siengman, “Defining and Measuring Laser Beam Quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, 1993), pp. 13–28.

2015 (1)

2014 (1)

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

2013 (3)

2000 (1)

1992 (1)

1991 (1)

J. M. Fleischer, “Laser beam width, divergence, and propagation factor: status and experience with the draft standard,” Proc. SPIE 1414, 2–11 (1991).
[Crossref]

1989 (1)

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

1988 (2)

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[Crossref]

1980 (1)

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Chen, J.

Chen, J. K.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Cheng, M.

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Dou, R.

Dou, R. Q.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Duan, Q. Z.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Esterowitz, L.

Fang, Z.

Fleischer, J. M.

J. M. Fleischer, “Laser beam width, divergence, and propagation factor: status and experience with the draft standard,” Proc. SPIE 1414, 2–11 (1991).
[Crossref]

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Frenz, M.

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

Ganikhanov, F.

Guo, Q.

Jiang, C.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Kang, H.

Lobachev, V. A.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Lu, B.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Lu, Q.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Lu, S. Z.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Luo, J.

Luo, J. Q.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Maffetone, J. P.

Manni, J. G.

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[Crossref]

Moulton, P. F.

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[Crossref]

Murina, T. M.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Prokhorov, A. M.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Rines, G. A.

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[Crossref]

Roman, V.

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

Ruderman, W.

Shevel, A. F.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Stoneman, R. C.

Sun, D.

Sun, D. L.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Vodopyanov, K. L.

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Weber, H. P.

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

Xiao, J.

Xiao, J. Z.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Yang, Q. H.

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Yin, S.

Zhang, H.

Zhang, Q.

Zhang, Q. L.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Zhao, X.

Zhekov, V. E.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Zubov, B. V.

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Zweig, A. D.

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

Zwieback, I.

Appl. Phys. B (1)

A. D. Zweig, M. Frenz, V. Roman, and H. P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47(3), 259–265 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[Crossref]

J. Alloys Compd. (1)

Q. Z. Duan, Q. H. Yang, S. Z. Lu, C. Jiang, Q. Lu, and B. Lu, “Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics,” J. Alloys Compd. 612(10), 239–242 (2014).
[Crossref]

Kvantovaia Elektronika Moscow (1)

V. E. Zhekov, B. V. Zubov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and A. F. Shevel, “Mechanism for the formation of population inversion between 4I11/2 and 4I13/2 levels of the Er3+ ion in Y3Al5O12 crystals,” Kvantovaia Elektronika Moscow 7, 749–753 (1980).

Lasers Surg. Med. (1)

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Opt. Commun. (1)

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun. 301–302(8), 84–87 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

J. M. Fleischer, “Laser beam width, divergence, and propagation factor: status and experience with the draft standard,” Proc. SPIE 1414, 2–11 (1991).
[Crossref]

Other (2)

A. E. Siengman, “Defining and Measuring Laser Beam Quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, 1993), pp. 13–28.

W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2005), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Photograph of the single Cr,Er,Pr:GYSGG crystal and the bonding GYSGG/Cr,Er,Pr:GYSGG crystal.
Fig. 2
Fig. 2 Schematic of the GYSGG/Cr,Er,Pr:GYSGG composite crystal laser pumped by the xenon lamp.
Fig. 3
Fig. 3 Fluorescence decay curves of the Cr,Er,Pr:GYSGG crystal.
Fig. 4
Fig. 4 Relative temperature distribution models of single Cr,Er,Pr:GYSGG crystal rod and GYSGG/Cr,Er,Pr:GYSGG composite crystal rod. (a) the whole laser rods; (b) cross-sections at bonding or corresponding position. The red represents high temperature and blue represents low temperature.
Fig. 5
Fig. 5 Relative maximum temperature at the bonding section of two crystals.
Fig. 6
Fig. 6 Output pulse energy for Cr,Er,Pr:GYSGG crystal versus pump energy at different repetition rate.
Fig. 7
Fig. 7 Output pulse energy for GYSGG/Cr,Er,Pr:GYSGG composite crystal versus pump energy at different repetition rates.
Fig. 8
Fig. 8 Thermal focal lengths of two crystals as a function of pump power.
Fig. 9
Fig. 9 Beam diameter versus propagation distance of two crystals. (a) Cr,Er,Pr:GYSGG crystal; (b) GYSGG/Cr,Er,Pr:GYSGG composite crystal.

Tables (1)

Tables Icon

Table 1 Concentration, lifetime and laser parameters of Cr,Er,Pr:GYSGG crystals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( k(T)T )+Q=ρ c P T t
2 T= 2 T r 2 + 1 r T r + 2 T z 2 + 1 r 2 2 T θ 2 = Q K
2 T r 2 + 1 r T r + 2 T z 2 = Q(r,z) K
K T s | S =h( T C T| S )
M 2 = ϖΘπ 4λ

Metrics