Abstract

We theoretically investigate the dipolar whispering-gallery modes (WGMs) with different mode orders supported by spherical hyperbolic metamaterial (HMM) cavities consisting of alternating metal and dielectric layers. Associated with the excitations of the WGMs with the highest and the second highest mode orders, the HMM cavities are capable of creating highly enhanced and uniformly distributed local fields in the entire dielectric core region. Variation on the metal filling ratio allows for easily tuning the resonant wavelengths of WGMs over a wide spectral range. By integrating a nonlinear nanocrystal into the HMM cavities, we show enhancements of intensity of second harmonic generation up to a factor of 3.9 × 1010, which is two orders of magnitude higher than the largest enhancement achieved in the single-layer plasmonic core-shell cavities.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

24 August 2017: A typographical correction was made to the author listing.


OSA Recommended Articles
Plasmonic enhancement of second harmonic generation on metal coated nanoparticles

Sarina Wunderlich and Ulf Peschel
Opt. Express 21(16) 18611-18623 (2013)

Hyperbolic metamaterial resonator–antenna scheme for large, broadband emission enhancement and single-photon collection

Faraz A. Inam, Nadeem Ahmed, Michael J. Steel, and Stefania Castelletto
J. Opt. Soc. Am. B 35(9) 2153-2162 (2018)

Efficient second harmonic generation in gold–silicon core–shell nanostructures

Zhong-Jian Yang, Qian Zhao, Yan-Hui Deng, Dou Zhang, and Jun He
Opt. Express 26(5) 5835-5844 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  3. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
    [Crossref] [PubMed]
  4. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  5. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  6. E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
    [Crossref] [PubMed]
  7. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]
  8. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  9. T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
    [Crossref] [PubMed]
  10. J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
    [Crossref] [PubMed]
  11. S. Panaro and C. Ciracì, “Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime,” ACS Photonics 3(12), 2467–2474 (2016).
    [Crossref]
  12. M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
    [Crossref] [PubMed]
  13. H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
    [Crossref] [PubMed]
  14. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  15. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  16. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [Crossref] [PubMed]
  17. T. H. Park and P. Nordlander, “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chem. Phys. Lett. 472(4-6), 228–231 (2009).
    [Crossref]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley New York, 1983).
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  20. C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
    [Crossref]
  21. M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
    [Crossref]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  23. R. W. Boyd, Nonlinear Optics (Academic Press: Burlington, MA, 2008).
  24. P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
    [Crossref]
  25. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
    [Crossref]
  26. E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).
  27. H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
    [Crossref] [PubMed]
  28. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]

2017 (1)

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

2016 (4)

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

S. Panaro and C. Ciracì, “Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime,” ACS Photonics 3(12), 2467–2474 (2016).
[Crossref]

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

2015 (1)

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

2014 (4)

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

2013 (2)

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

2012 (2)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

2010 (4)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

T. H. Park and P. Nordlander, “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chem. Phys. Lett. 472(4-6), 228–231 (2009).
[Crossref]

2008 (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

2007 (1)

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

2005 (1)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

1999 (1)

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Argyropoulos, C.

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Averitt, R. D.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Bonnet, C.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Broyer, M.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Chen, Z.

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciracì, C.

S. Panaro and C. Ciracì, “Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime,” ACS Photonics 3(12), 2467–2474 (2016).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cottancin, E.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ekinci, Y.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Grange, R.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Gu, P.

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

He, X.

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hogele, A.

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Hsieh, C. L.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Iglesias-Silva, E.

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Lebeault, M. A.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Lee, J.

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

León Isidro, L. M.

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

Lermé, J.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Liedl, T.

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Liu, W.

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

López-Quintela, M. A.

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Man, Y. C.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Marguet, S.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Martin, O. J. F.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Navarro, J. R. G.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Ni, X.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Nordlander, P.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

T. H. Park and P. Nordlander, “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chem. Phys. Lett. 472(4-6), 228–231 (2009).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

Panaro, S.

S. Panaro and C. Ciracì, “Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime,” ACS Photonics 3(12), 2467–2474 (2016).
[Crossref]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Park, T. H.

T. H. Park and P. Nordlander, “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chem. Phys. Lett. 472(4-6), 228–231 (2009).
[Crossref]

Pellarin, M.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Pilo-Pais, M.

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Psaltis, D.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Ramade, J.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Rivas, J.

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

Roller, E. M.

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Rye, J. M.

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

Salandrino, A.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Shen, Q.

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Shin, J. H.

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

Siegfried, T.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Sigg, H.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Song, J.

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Sung, G. Y.

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Wan, M.

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Wang, J.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Wang, Z.

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Westcott, S. L.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yang, B.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zhan, P.

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Zhao, C.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

ACS Nano (1)

M. Pellarin, J. Ramade, J. M. Rye, C. Bonnet, M. Broyer, M. A. Lebeault, J. Lermé, S. Marguet, J. R. G. Navarro, and E. Cottancin, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling,” ACS Nano 10(12), 11266–11279 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

S. Panaro and C. Ciracì, “Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime,” ACS Photonics 3(12), 2467–2474 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal coreshell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Chem. Phys. Lett. (1)

T. H. Park and P. Nordlander, “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chem. Phys. Lett. 472(4-6), 228–231 (2009).
[Crossref]

J. Chem. Phys. (1)

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[Crossref]

J. Non-Cryst, Sol. (1)

E. Iglesias-Silva, J. Rivas, L. M. León Isidro, and M. A. López-Quintela, “Synthesis of silver-coated magnetite nanoparticles,” J. Non-Cryst, Sol. 353, 829–831 (2007).

Nano Lett. (4)

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

J. Lee, J. Song, G. Y. Sung, and J. H. Shin, “Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ02/15,000 Mode-Area Fabricated Using Photolithography,” Nano Lett. 14(10), 5533–5538 (2014).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

E. M. Roller, C. Argyropoulos, A. Hogele, T. Liedl, and M. Pilo-Pais, “Plasmon-Exciton Coupling Using DNA Templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (3)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Phys. Rev. Lett. (1)

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Small (1)

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (Gold Core)-(Dielectric Shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley New York, 1983).

R. W. Boyd, Nonlinear Optics (Academic Press: Burlington, MA, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of a spherical HMM cavity with 4 functional pairs. The refractive index of the dielectric core is n = 2.5 and its radius is r. Each pair is constituted of a dielectric layer (refractive index: n = 1.5, thickness: d) and a silver shell layer (thickness: t). (b) Extinction efficiency spectra of the HMM cavities with different numbers of functional pairs. The core radius and the dielectric shell thickness are assumed to be r = d = 10 nm. The metal filling ratio is fixed to be f = 0.1. For clarity, each curve is shifted vertically by a constant relative to the previous one. (c)-(e) Electric field amplitude enhancement distributions of the resonances WGM1, WGM3, and WGM7 in 1-pair, 3-pair, and 7-pair HMM cavities, respectively. The upper panels present the field amplitude along the cross sections indicated by dashed lines in the lower panels. (f) Summarization of the amplitude enhancement of the electric field taken at a point 0.1 nm away from the center of the HMM cavities with different numbers of functional pairs.
Fig. 2
Fig. 2 (a) The extinction spectra of 4-pair HMM cavities with four different metal filling ratios. The core radius and dielectric shell thickness are fixed to be r = d = 10 nm. Each curve is shifted vertically by a constant relative to the previous one. (b) Amplitude enhancement of the electric field taken at a point 0.1 nm away from the center as functions of the metal filling ratio and wavelength. Marked points A and B indicate the particular filling ratios of f = 0.1 and 0.19 where the WGM4 and WGM3 resonances can produce the maximum field enhancement at the wavelength of 810 nm, respectively. (c) Field distribution of the WGM4 resonance supported by a 4-pair HMM cavity with filling ratio corresponding to the marked point A in (b). (d) Field distribution of the WGM1 supported by a 1-pair HMM cavity with core radius of r = 10 nm and filling ratio of f = 0.12. (e) Similar to (c) but for the WGM3 resonance and filling ratio corresponding to the marked point B in (b). The upper panels in (c)-(e) present the field amplitude along the cross sections indicated by dashed lines in the lower panels.
Fig. 3
Fig. 3 (a) The SHG enhancement calculated for a 4-pair HMM cavity with r = d = 10 nm and f = 0.19 (red open squares), a 1-pair HMM cavity with r = 4 nm and f = 0.118 (blue open triangles), and a 1-pair HMM cavity with r = 10 nm and f = 0.12 (black solid line). (b) Electric field amplitude enhancement along a cross-section-line at z = 0 nm for the WGM3 resonance supported by the 4-pair HMM cavity with r = d = 10 nm and f = 0.19 (red curve) and the WGM1 resonance supported by the 1-pair HMM cavity with r = 4 nm and f = 0.118 (blue curve).

Metrics