Abstract

We demonstrate a novel imaging architecture to collect range encoded diffraction patterns from overlapping samples in a single conical shell projection. The patterns were measured in the dark area encompassed by the beam via a centrally positioned aperture optically coupled to a pixelated energy-resolving detector. We show that a single exposure measurement of 0.3 mAs enables d-spacing values to be calculated. The axial positions of the samples were not required and the resultant measurements were robust in the presence of crystallographic textures. Our results demonstrate rapid volumetric materials characterization and the potential for a direct imaging method, which is of great relevance to applications in medicine, non-destructive testing and security screening.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, F. Elarnaut, A. Shevchuk, D. Downes, and M. Wilson
Opt. Express 27(14) 19834-19841 (2019)

Energy-dispersive X-ray diffraction using an annular beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos
Opt. Express 23(10) 13443-13454 (2015)

Combined X-ray diffraction and absorption tomography using a conical shell beam

A. Shevchuk, J. P. O. Evans, A. J. Dicken, F. Elarnaut, D. Downes, S. X. Godber, and K. D. Rogers
Opt. Express 27(15) 21092-21101 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
    [Crossref] [PubMed]
  2. S. A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Med. 24(3), 129–148 (2008).
    [Crossref] [PubMed]
  3. S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
    [Crossref] [PubMed]
  4. G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
    [Crossref] [PubMed]
  5. K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady, “Pencil beam coded aperture x-ray scatter imaging,” Opt. Express 20(15), 16310–16320 (2012).
    [Crossref]
  6. J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21(21), 25480–25491 (2013).
    [Crossref] [PubMed]
  7. C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
    [Crossref]
  8. A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
    [Crossref]
  9. D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).
  10. D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).
  11. D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
    [Crossref]
  12. J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39(1), 111–114 (2014).
    [Crossref] [PubMed]
  13. K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52(19), 4582–4589 (2013).
    [Crossref] [PubMed]
  14. S. Pang, M. Hassan, J. Greenberg, A. Holmgren, K. Krishnamurthy, and D. Brady, “Complementary coded apertures for 4-dimensional x-ray coherent scatter imaging,” Opt. Express 22(19), 22925–22936 (2014).
    [Crossref] [PubMed]
  15. J. A. Greenberg, M. Hassan, K. Krishnamurthy, and D. Brady, “Structured illumination for tomographic X-ray diffraction imaging,” Analyst (Lond.) 139(4), 709–713 (2014).
    [Crossref] [PubMed]
  16. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
    [Crossref]
  17. A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
    [Crossref] [PubMed]
  18. A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
    [Crossref] [PubMed]
  19. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  20. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  21. J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
    [Crossref] [PubMed]
  22. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [Crossref] [PubMed]
  23. D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
    [Crossref]
  24. P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
    [Crossref] [PubMed]
  25. B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
    [Crossref]
  26. R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
    [Crossref]
  27. K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
    [Crossref]
  28. S. J. Chipera and D. L. Bish, “Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases,” Adv. in Mater. Phys. and Chem. 3, 47–53 (2013).
  29. J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
    [Crossref]
  30. C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
    [Crossref] [PubMed]

2017 (1)

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

2016 (2)

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

2015 (2)

2014 (5)

2013 (6)

S. J. Chipera and D. L. Bish, “Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases,” Adv. in Mater. Phys. and Chem. 3, 47–53 (2013).

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21(21), 25480–25491 (2013).
[Crossref] [PubMed]

K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52(19), 4582–4589 (2013).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

2012 (3)

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady, “Pencil beam coded aperture x-ray scatter imaging,” Opt. Express 20(15), 16310–16320 (2012).
[Crossref]

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

2011 (2)

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

2010 (2)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

2008 (1)

S. A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Med. 24(3), 129–148 (2008).
[Crossref] [PubMed]

2004 (1)

K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
[Crossref]

2000 (1)

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

1996 (2)

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

1987 (1)

J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
[Crossref]

1896 (1)

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Barnes, P.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Beale, A. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Bell, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Bish, D. L.

S. J. Chipera and D. L. Bish, “Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases,” Adv. in Mater. Phys. and Chem. 3, 47–53 (2013).

Brady, D.

Brady, D. J.

Brahme, A.

S. A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Med. 24(3), 129–148 (2008).
[Crossref] [PubMed]

Cernik, R. J.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Chan, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Chawla, A.

Chipera, S. J.

S. J. Chipera and D. L. Bish, “Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases,” Adv. in Mater. Phys. and Chem. 3, 47–53 (2013).

Christodoulou, C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Clement, J. G.

Colston, S. L.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Crews, C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Desai, H.

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

Dicken, A.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Dicken, A. J.

Downes, D.

Drakos, I.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

Duvauchelle, P.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Egan, C. K.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Elarnaut, F.

Etok, S. E.

K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
[Crossref]

Evans, J. P. O.

Evans, P.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Fleckenstein, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Frutos, G.

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

Frutos, P.

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

Gaskin, J. A.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Ghammraoui, B.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Gibson, E. K.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Godber, S.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Godber, S. X.

Greenberg, J.

Greenberg, J. A.

J. A. Greenberg, M. Hassan, K. Krishnamurthy, and D. Brady, “Structured illumination for tomographic X-ray diffraction imaging,” Analyst (Lond.) 139(4), 709–713 (2014).
[Crossref] [PubMed]

J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21(21), 25480–25491 (2013).
[Crossref] [PubMed]

Greenwood, C.

Hall, C.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Hämäläinen, K.

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

Harding, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Hassan, M.

J. A. Greenberg, M. Hassan, K. Krishnamurthy, and D. Brady, “Structured illumination for tomographic X-ray diffraction imaging,” Analyst (Lond.) 139(4), 709–713 (2014).
[Crossref] [PubMed]

S. Pang, M. Hassan, J. Greenberg, A. Holmgren, K. Krishnamurthy, and D. Brady, “Complementary coded apertures for 4-dimensional x-ray coherent scatter imaging,” Opt. Express 22(19), 22925–22936 (2014).
[Crossref] [PubMed]

Hills, D.

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

Holmgren, A.

Holmgren, A. D.

Horrocks, J. A.

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

Huotari, S.

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

Jacques, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Jacques, S. D. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Jupe, A. C.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Kosciesza, D.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Krishnamurthy, K.

Lacey, R. J.

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

Lastres, J. L.

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

Livingston, R.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Luggar, R. D.

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

Lyburn, I.

MacCabe, K.

MacCabe, K. P.

Made, A. W.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Marks, D.

Martin, R. M.

Michiel, M. D.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Monaco, G.

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

O’Flynn, D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

Olesinski, S.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Pabón, C. V.

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

Palanques, A.

J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
[Crossref]

Pang, S.

Pani, S.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Paula, P.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

Paulus, C.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Plana, F.

J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
[Crossref]

Prokopiou, D.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Pylkkänen, T.

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

Ramadan, A. O. A.

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Ramsey, B. D.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Rebuffel, V.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Reid, C.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Reid, C. B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

Rius, J.

J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
[Crossref]

Rogers, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Rogers, K.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
[Crossref]

Rogers, K. D.

Röntgen, W. C.

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Samei, E.

Scott, R.

K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
[Crossref]

Scuffham, J. W.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Seller, P.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Sellin, P. J.

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Shevchuk, A.

Smith, K. L.

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

Speller, R.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

Speller, R. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

Stone, N.

Strecker, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Tabary, J.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Theedt, T.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Tornai, M. P.

Veale, M. C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Verbeni, R.

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

Verger, L.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Wilson, M. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

Wong, B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

Zhou, S. A.

S. A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Med. 24(3), 129–148 (2008).
[Crossref] [PubMed]

Zienert, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Zioupos, P.

Adv. in Mater. Phys. and Chem. (1)

S. J. Chipera and D. L. Bish, “Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases,” Adv. in Mater. Phys. and Chem. 3, 47–53 (2013).

Analyst (Lond.) (1)

J. A. Greenberg, M. Hassan, K. Krishnamurthy, and D. Brady, “Structured illumination for tomographic X-ray diffraction imaging,” Analyst (Lond.) 139(4), 709–713 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Appl. Radiat. Isot. (2)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by focal construct technology,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Cement Concr. Res. (1)

C. Hall, S. L. Colston, A. C. Jupe, S. D. M. Jacques, R. Livingston, A. O. A. Ramadan, A. W. Made, and P. Barnes, “Non-destructive tomographic energy-dispersive diffraction imaging of the interior of bulk concrete,” Cement Concr. Res. 30(3), 491–495 (2000).
[Crossref]

Coord. Chem. Rev. (1)

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. D. Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Crime Sci. (1)

D. O’Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixelated X-ray diffraction,” Crime Sci. 2, 4 (2013).

J. Appl. Cryst. (3)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

D. Prokopiou, K. L. Smith, K. Rogers, P. Paula, P. Evans, A. Dicken, and S. Godber, “Simulations and experimental demonstrations of encoding for X-ray coherent scattering,” J. Appl. Cryst. 50(2), 411–418 (2017).
[Crossref]

J. Rius, F. Plana, and A. Palanques, “A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures,” J. Appl. Cryst. 20(6), 457–460 (1987).
[Crossref]

J. Instrum. (1)

P. Seller, S. Bell, R. J. Cernik, C. Christodoulou, C. K. Egan, J. A. Gaskin, S. Jacques, S. Pani, B. D. Ramsey, C. Reid, P. J. Sellin, J. W. Scuffham, R. D. Speller, M. D. Wilson, and M. C. Veale, “Pixellated Cd(Zn)Te high-energy X-ray instrument,” J. Instrum. 6(12), C12009 (2011).
[Crossref] [PubMed]

J. Mater. Sci. (1)

K. Rogers, S. E. Etok, and R. Scott, “Structural characterisation of apatite coatings,” J. Mater. Sci. 39(18), 5747–5754 (2004).
[Crossref]

J. Pharm. Biomed. Anal. (1)

C. V. Pabón, P. Frutos, J. L. Lastres, and G. Frutos, “Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide,” J. Pharm. Biomed. Anal. 15(1), 131–138 (1996).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 175304 (2016).
[Crossref]

JINST (1)

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixelated X-ray diffraction (PixD),” JINST 8, P03007 (2013).

Nat. Mater. (1)

S. Huotari, T. Pylkkänen, R. Verbeni, G. Monaco, and K. Hämäläinen, “Direct tomography with chemical-bond contrast,” Nat. Mater. 10(7), 489–493 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. (1)

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. 383(2-3), 610–618 (1996).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res. A 683, 1–7 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Med. (1)

S. A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Med. 24(3), 129–148 (2008).
[Crossref] [PubMed]

Science (1)

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Coordinate system diagram illustrating a conical shell X-ray beam incident upon two planar samples at different (unknown) ranges. The diffracted flux from the samples is focused via the aperture into characteristic depth dependent radii on a pixelated energy resolving detector.
Fig. 2
Fig. 2 (a) Integrated intensity image of three normally positioned samples; calcite (innermost ring closest to the source), sodium chloride (middle ring) and aluminum (outermost ring closest to the detector). In this example a relatively long exposure time of 300 seconds (90 mAs) was used to enhance the spatial image. The dotted arcs on radii r have been plotted according to Eq. (3) using the mean true axial sample positions. (b) d-spacing v sample distance (z) representation of the image data, via Eqs. (2)-(3). Systematic broadening, Δd=0.36 Å,recorded for the 1.99 Å d-spacing of the sodium chloride sample, via Eq. (4).
Fig. 3
Fig. 3 1D diffraction patterns for three different samples positioned together in the beam with true source-to-sample separations indicated in parentheses; (a) calcite (135 mm) (b) sodium chloride (185 mm) and (c) aluminum (225 mm). The signals were integrated over exposure times; 3, 1.5 and 0.3 mAs equating to 10, 5 and 1 seconds, respectively. A Savitzky-Golay smoothing filter has been applied. The diffractograms have been time normalized and vertically offset for clarity. Error bars indicate the systematic broadening Δd for principal peaks. The associated true-d-spacing and Δd (Å) values are; (a) 3.035, 0.68 (b) 1.990, 0.36 and (c) 2.388, 0.39, respectively.

Tables (1)

Tables Icon

Table 1 Details of the three different sample materials used in the experiments.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 θ max,min = tan 1 [ ±a+ z max,min tan ϕ max,min A z max,min ]+ ϕ max,min ,
z= Ar r+ftanϕ .
d= nλ 2sin{ 1 2 [ tan 1 ( r f )+ϕ ] } .
d min/max = hc 2( E min/max ±ΔE )sin( 1 2 { tan 1 [ ±a±δr+ftan( 2 θ max/min ϕ max/min ) f ]+ϕ } ) ,

Metrics