Abstract

We demonstrate femtosecond-level timing fluctuation suppression in indoor atmospheric comb-based frequency transfer with a passive phase conjunction correction technique. Timing fluctuations and Allan deviations are both measured to characterize the excess frequency instability incurred during the frequency transfer process. By transferring a 2 GHz microwave over a 52-m long free-space link in 5000 s, the total root-mean-square (RMS) timing fluctuation was measured to be about 280 fs with a fractional frequency instability on the order of 3 × 10−13 at 1 s and 6 × 10−17 at 1000 s. This atmospheric comb-based frequency transfer with passive phase conjunction correction can be used to build an atomic clock-based free-space frequency transmission link because its instability is less than that of a commercial Cs or H-master clock.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Free-space-based multiple-access frequency dissemination with optical frequency comb

Dong Hou, Danian Zhang, Fuyu Sun, Yimei Li, and Jie Tian
Opt. Express 26(15) 19199-19205 (2018)

Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer

Jinho Kang, Junho Shin, Chur Kim, Kwangyun Jung, Suhyeon Park, and Jungwon Kim
Opt. Express 22(21) 26023-26031 (2014)

Atmospheric transfer of a radio-frequency clock signal with a diode laser

Jinsong Nie, Lin Yang, and Lingze Duan
Appl. Opt. 51(34) 8190-8194 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
    [Crossref]
  2. B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
    [Crossref]
  3. W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
    [Crossref]
  4. M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).
  5. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
    [Crossref] [PubMed]
  6. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  7. D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express 19(2), 506–511 (2011).
    [Crossref] [PubMed]
  8. K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
    [Crossref] [PubMed]
  9. X. Chen, J. Zhang, J. Lu, X. Lu, X. Tian, B. Liu, H. Wu, T. Tang, K. Shi, and Z. Zhang, “Feed-forward digital phase compensation for long-distance precise frequency dissemination via fiber network,” Opt. Lett. 40(3), 371–374 (2015).
    [Crossref] [PubMed]
  10. B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
    [Crossref] [PubMed]
  11. H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
    [Crossref]
  12. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
    [Crossref]
  13. F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
    [Crossref]
  14. B. Sprenger, J. Zhang, Z. H. Lu, and L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
    [Crossref] [PubMed]
  15. R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
    [Crossref]
  16. R. P. Gollapalli and L. Duan, “Multiheterodyne characterization of excess phase noise in atmospheric transfer of a femtosecond-laser frequency comb,” J. Lightwave Technol. 29(22), 3401–3407 (2011).
    [Crossref]
  17. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
    [Crossref]
  18. L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
    [Crossref]
  19. J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
    [Crossref] [PubMed]
  20. J. Kang, J. Shin, C. Kim, K. Jung, S. Park, and J. Kim, “Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer,” Opt. Express 22(21), 26023–26031 (2014).
    [Crossref] [PubMed]
  21. S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
    [Crossref]
  22. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
    [Crossref] [PubMed]
  23. J. Nie, L. Yang, and L. Duan, “Atmospheric transfer of a radio-frequency clock signal with a diode laser,” Appl. Opt. 51(34), 8190–8194 (2012).
    [Crossref] [PubMed]
  24. L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
    [Crossref]
  25. C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
    [Crossref]
  26. D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).
  27. Microsemi, “DS-5071a”, http://www.microsemi.com/products/timing-synchronizationsystems/time-frequency-references/cesium-frequency-standards/5071a , (2014).
  28. http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ , (2011).

2017 (1)

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

2016 (4)

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

2015 (3)

X. Chen, J. Zhang, J. Lu, X. Lu, X. Tian, B. Liu, H. Wu, T. Tang, K. Shi, and Z. Zhang, “Feed-forward digital phase compensation for long-distance precise frequency dissemination via fiber network,” Opt. Lett. 40(3), 371–374 (2015).
[Crossref] [PubMed]

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

2014 (3)

J. Kang, J. Shin, C. Kim, K. Jung, S. Park, and J. Kim, “Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer,” Opt. Express 22(21), 26023–26031 (2014).
[Crossref] [PubMed]

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

2013 (1)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

2012 (2)

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

J. Nie, L. Yang, and L. Duan, “Atmospheric transfer of a radio-frequency clock signal with a diode laser,” Appl. Opt. 51(34), 8190–8194 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

2007 (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

2006 (2)

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[Crossref]

Acef, O.

Alnis, J.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Bai, Q.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Bai, Y.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

Bangert, J.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Baumann, E.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Bergeron, H.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

Cermak, M.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Chan, V. W. S.

Chen, D.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Chen, Q.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Chen, S.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Chen, X.

Cheng, J.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

Clairon, A.

Coddington, I.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Conan, J. M.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Dennis, M. L.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Deschenes, J. D.

Deschênes, J. D.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Ding, C. B.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Djerroud, K.

Dong, J. W.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

Droste, S.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Duan, L.

Dunham, S. J.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Foreman, S. M.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Gao, C.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

Giorgetta, F. R.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Gollapalli, R. P.

Grosche, G.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hassan, M. Z.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Holzwarth, R.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hossain, M. J.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

Hou, D.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express 19(2), 506–511 (2011).
[Crossref] [PubMed]

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Jones, T. E.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Juarez, J. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Jung, K.

Kang, J.

Kaplan, G.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Kärtner, F. X.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Khader, I.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Kim, C.

Kim, J.

LeBlang, M. E.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Lee, H. K.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Legero, T.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Lemonde, P.

Leung, V. C. M.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

Levine, J.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Li, B. H.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Li, P.

Liang, X. D.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Liu, B.

Liu, C.

Lu, J.

Lu, X.

Lu, Z. H.

Man, C. N.

Miao, J.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

Nelson, C. W.

Newbury, N. R.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Nie, J.

Ning, B.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

Pappalardi, F.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Park, S.

Petrillo, K. G.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Predehl, K.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Raupach, S. M.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Rizos, C.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Robert, C.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Samain, E.

Schnatz, H.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Shi, K.

Shin, J.

Sinclair, L. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Souza, K. T.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

Sprenger, B.

Sun, F.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Swann, W. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschenes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Tang, T.

Terra, O.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Tian, X.

Udem, T.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Wang, B.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

Wang, L. J.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

B. Sprenger, J. Zhang, Z. H. Lu, and L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
[Crossref] [PubMed]

Wang, W. Q.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Wolf, P.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
[Crossref] [PubMed]

Wu, H.

Wu, J.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

Yang, L.

Ye, J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Yuan, Y. B.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

Zhang, J.

Zhang, S.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

Zhang, Z.

Zhao, J.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express 19(2), 506–511 (2011).
[Crossref] [PubMed]

Zhu, X.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref]

GPS Solut. (1)

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101308 (2014).

IEEE Photonics J. (1)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
[Crossref]

IET Radar Sonar & Navigation (1)

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

J. Lightwave Technol. (2)

Metrologia (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Nat. Photonics (2)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 435–439 (2013).
[Crossref]

Opt. Commun. (1)

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (2)

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometre array telescope — precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5(1), 13851 (2015).
[Crossref] [PubMed]

Science (1)

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

ZTE Communications (1)

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Subcarrier intensity modulated optical wireless communications: a survey from communication theory perspective,” ZTE Communications 14(2), 2–12 (2016).

Other (3)

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (2001).
[Crossref]

Microsemi, “DS-5071a”, http://www.microsemi.com/products/timing-synchronizationsystems/time-frequency-references/cesium-frequency-standards/5071a , (2014).

http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ , (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of atmospheric OFC-based frequency transfer with passive phase conjunction correction. OFC: optical frequency comb, BS: beam splitter, PD: photodiode, HM: half-mirror, PI: proportional-integral controller, BPF: band-pass filter. V1, V2, V3 … Vn, are harmonics of the OFC.
Fig. 2
Fig. 2 Experimental setup of our atmospheric OFC-based frequency transfer with phase conjunction correction. OFC: optical frequency comb, OC: optical coupler, CM: collimator, PD: photodiode, PI: proportional-integral controller, AMP: amplifier, BPF: band-pass filter, HM: half-mirror.
Fig. 3
Fig. 3 Timing jitter (PSD) results for atmospheric frequency transfer. Curve (i): Without timing fluctuation suppression. Curve (ii): With timing fluctuation suppression. Curve (iii): The result for a short link on local site as a measurement floor.
Fig. 4
Fig. 4 Timing fluctuation results for atmospheric frequency transfer. Curve (i): Without timing fluctuation suppression. Curve (ii): With timing fluctuation suppression. Curve (iii): The result for a short link on local site as a measurement floor. Sample rate is 1 point/second for all curves.
Fig. 5
Fig. 5 Instability results for atmospheric frequency transfer, (i) Relative Allan deviation between transferred microwave and reference signal without timing fluctuation suppression; (ii) Relative Allan deviation with timing fluctuation suppression; (iii) Allan deviation for a short link as measurement floor.

Metrics