Abstract

We demonstrate the ability of a phase-sensitive amplifier (PSA) to pre-amplify a selected quadrature of one mode of a two-mode squeezed state in order to improve the measurement of two-mode quantum correlations that exist before degradation due to optical and detection losses. We use four-wave mixing (4WM) in 85Rb vapor to generate bright beams in a two-mode squeezed state. One of these two modes then passes through a second 4WM interaction in a PSA configuration to noiselessly pre-amplify the desired quadrature of the mode before loss is intentionally introduced. We demonstrate an enhancement in the measured degree of intensity correlation and intensity-difference squeezing between the two modes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulsed entanglement measured by parametric amplifier assisted homodyne detection

Jiamin Li, Yuhong Liu, Nan Huo, Liang Cui, Chang Feng, Z. Y. Ou, and Xiaoying Li
Opt. Express 27(21) 30552-30562 (2019)

Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor

Neil Corzo, Alberto M. Marino, Kevin M. Jones, and Paul D. Lett
Opt. Express 19(22) 21358-21369 (2011)

Twin-beam intensity-difference squeezing below 10 Hz

Meng-Chang Wu, Bonnie L. Schmittberger, Nicholas R. Brewer, Rory W. Speirs, Kevin M. Jones, and Paul D. Lett
Opt. Express 27(4) 4769-4780 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).
  2. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
    [Crossref]
  3. U. Leonhardt and H. Paul, “High-Accuracy Optical Homodyne Detection with Low-Efficiency Detectors: ‘Preamplification’ from Antisqueezing,” Phys. Rev. Lett. 72(26), 4086–4089 (1994).
    [Crossref] [PubMed]
  4. M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
    [Crossref]
  5. M. S. Kim, “Enhancement of detection efficiencies in homodyne measurements: Comparison between squeezing signal fields and squeezing local oscillator fields,” J. Mod. Opt. 44(8), 1437–1442 (1997).
  6. M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
    [Crossref]
  7. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
    [Crossref]
  8. J.-Ph. Poizat and P. Grangier, “Experimental Realization of a Quantum Optical Tap,” Phys. Rev. Lett. 70(3), 271–274 (1993).
    [Crossref] [PubMed]
  9. K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
    [Crossref]
  10. K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
    [Crossref]
  11. P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
    [Crossref]
  12. J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
    [Crossref]
  13. J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
    [Crossref]
  14. J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
    [Crossref]
  15. P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
    [Crossref]
  16. A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
    [Crossref]
  17. G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.
  18. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
    [Crossref]
  19. T. Li, B. E. Anderson, T. Horrom, K. M. Jones, and P. D. Lett, “Effect of input phase modulation to a phase-sensitive optical amplifier,” Opt. Express 24(17), 19871–19880 (2016).
    [Crossref] [PubMed]
  20. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
    [Crossref] [PubMed]
  21. N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
    [Crossref] [PubMed]
  22. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
    [Crossref]
  23. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
    [Crossref]
  24. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19(4), 3765–3774 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

2012 (1)

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (2)

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

2008 (1)

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
[Crossref]

2007 (2)

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
[Crossref]

2000 (1)

M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
[Crossref]

1999 (1)

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

1998 (2)

P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
[Crossref]

M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
[Crossref]

1997 (2)

M. S. Kim, “Enhancement of detection efficiencies in homodyne measurements: Comparison between squeezing signal fields and squeezing local oscillator fields,” J. Mod. Opt. 44(8), 1437–1442 (1997).

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

1996 (1)

K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
[Crossref]

1995 (1)

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

1994 (1)

U. Leonhardt and H. Paul, “High-Accuracy Optical Homodyne Detection with Low-Efficiency Detectors: ‘Preamplification’ from Antisqueezing,” Phys. Rev. Lett. 72(26), 4086–4089 (1994).
[Crossref] [PubMed]

1993 (3)

J.-Ph. Poizat and P. Grangier, “Experimental Realization of a Quantum Optical Tap,” Phys. Rev. Lett. 70(3), 271–274 (1993).
[Crossref] [PubMed]

J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Abram, I.

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

Ahmad, M.

M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
[Crossref]

Alon, G.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Anderson, B. E.

Appel, J.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

Arimondo, E.

Bachor, H.-A.

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

Bencheikh, K.

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
[Crossref]

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

Bhagwat, A.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Boyer, V.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
[Crossref]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Chen, C.-H.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Chin Won, R. P.

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

Corzo, N.

Corzo, N. V.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[Crossref] [PubMed]

Debuisschert, T.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

Diamanti, E.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

Dodonov, V.

M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
[Crossref]

Fedorov, I. A.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Figueroa, E.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

Fossier, S.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

Garreau, J. C.

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

Grangier, P.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
[Crossref]

J.-Ph. Poizat and P. Grangier, “Experimental Realization of a Quantum Optical Tap,” Phys. Rev. Lett. 70(3), 271–274 (1993).
[Crossref] [PubMed]

J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

Graydon, O.

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

Hoffman, D.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

Horiuchi, N.

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

Horrom, T.

Huntington, E.

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

Jasperse, M.

Jones, K. M.

Kim, M. S.

M. S. Kim, “Enhancement of detection efficiencies in homodyne measurements: Comparison between squeezing signal fields and squeezing local oscillator fields,” J. Mod. Opt. 44(8), 1437–1442 (1997).

Kumar, P.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Kurochkin, Y. V.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Lam, P.

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

Leonhardt, U.

U. Leonhardt and H. Paul, “High-Accuracy Optical Homodyne Detection with Low-Efficiency Detectors: ‘Preamplification’ from Antisqueezing,” Phys. Rev. Lett. 72(26), 4086–4089 (1994).
[Crossref] [PubMed]

Lett, P. D.

Levenson, J. A.

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
[Crossref]

K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
[Crossref]

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[Crossref]

Li, T.

Lim, O.-K.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Lopez, O.

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

Lovering, D. J.

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

Lvovsky, A. I.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

Marchiolli, M.

M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
[Crossref]

Marino, A. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[Crossref] [PubMed]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
[Crossref]

McCormick, C. F.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
[Crossref]

Mizrahi, S.

M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
[Crossref]

Paul, H.

U. Leonhardt and H. Paul, “High-Accuracy Optical Homodyne Detection with Low-Efficiency Detectors: ‘Preamplification’ from Antisqueezing,” Phys. Rev. Lett. 72(26), 4086–4089 (1994).
[Crossref] [PubMed]

Pile, D.

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

Poizat, J.-Ph.

P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
[Crossref]

J.-Ph. Poizat and P. Grangier, “Experimental Realization of a Quantum Optical Tap,” Phys. Rev. Lett. 70(3), 271–274 (1993).
[Crossref] [PubMed]

Pushkina, A. A.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Qamar, S.

M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
[Crossref]

Ralph, T.

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

Ralph, T. C.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Rivera, Th.

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[Crossref]

Scholten, R. E.

Simonneau, C.

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
[Crossref]

Tualle-Brouri, R.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

Turner, L. D.

Ulanov, A. E.

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Vasilyev, M.

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Vidakovic, P.

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

Zubairy, M. S.

M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
[Crossref]

Appl. Phys. Lett. (1)

K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66(4), 399–401 (1995).
[Crossref]

J. Mod. Opt. (1)

M. S. Kim, “Enhancement of detection efficiencies in homodyne measurements: Comparison between squeezing signal fields and squeezing local oscillator fields,” J. Mod. Opt. 44(8), 1437–1442 (1997).

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009).
[Crossref]

Nat. Photon. (2)

O. Graydon, R. P. Chin Won, D. Pile, and N. Horiuchi, “Focus Issue: Quantum Optics,” Nat. Photon. 3(12), 669–740 (2009).

A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and A. I. Lvovsky, “Undoing the effect of loss on quantum entanglement,” Nat. Photon. 9, 764–768 (2015).
[Crossref]

Nature (1)

P. Grangier, J. A. Levenson, and J.-Ph. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (4)

M. Marchiolli, S. Mizrahi, and V. Dodonov, “Signal-to-noise ratio of preamplified homodyne detection in quantum tomography,” Phys. Rev. A 57(5), 3885–3897 (1998).
[Crossref]

M. Ahmad, S. Qamar, and M. S. Zubairy, “Quantum-state tomography using phase-sensitive amplification,” Phys. Rev. A 62(4), 043814 (2000).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75(3), 035802 (2007).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008).
[Crossref]

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Phys. Rev. Lett. (6)

U. Leonhardt and H. Paul, “High-Accuracy Optical Homodyne Detection with Low-Efficiency Detectors: ‘Preamplification’ from Antisqueezing,” Phys. Rev. Lett. 72(26), 4086–4089 (1994).
[Crossref] [PubMed]

J.-Ph. Poizat and P. Grangier, “Experimental Realization of a Quantum Optical Tap,” Phys. Rev. Lett. 70(3), 271–274 (1993).
[Crossref] [PubMed]

K. Bencheikh, C. Simonneau, and J. A. Levenson, “Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus,” Phys. Rev. Lett. 78(1), 34–37 (1996).
[Crossref]

J. A. Levenson, I. Abram, Th. Rivera, J. C. Garreau, and P. Grangier, “Quantum Optical Cloning Amplifier,” Phys. Rev. Lett. 70(3), 3–6 (1993).
[Crossref]

P. Lam, T. Ralph, E. Huntington, and H.-A. Bachor, “Noiseless Signal Amplification using Positive Electro-Optic Feedforward,” Phys. Rev. Lett. 79(8), 1471–1474 (1997).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes,” Phys. Rev. Lett. 109(4), 043602 (2012).
[Crossref] [PubMed]

Quantum Semiclass. Opt. (1)

J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9(2), 221–237 (1999).
[Crossref]

Other (1)

G. Alon, O.-K. Lim, A. Bhagwat, C.-H. Chen, M. Vasilyev, and P. Kumar, “Amplification of a Squeezed-Quadrature using a Cascaded Traveling-Wave Phase-Sensitive Optical Parametric Amplifier,” the International Quantum Electronics Conference/Conference on Lasers and Electro-Optics (IQEC/CLEO) Pacific Rim, August 28–September 1, 2011, Sydney, Australia, paper 2260-CT-3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Conceptual schematic of the experiment. The source produces two modes a and b that are quantum correlated. The non-unity quantum efficiency of the detection and any other optical losses are symbolized by two beamsplitters with transmission ηa and ηb. D denotes ideal detectors with perfect quantum efficiency. M represents the processing of the detected signals to produce information about the quantum state in modes a and b.
Fig. 2
Fig. 2 Experimental setup and 4WM schemes showing atomic energy levels in 85Rb and laser tunings. (a) Experimental setup. The source generates a two-mode squeezed state. η’s are the transmissions of beamsplitters that represent losses: ηa1 is the probe transmission before the PSA and ηa2 is the probe transmission after the PSA representing all the downstream losses including imperfect detector efficiency. We vary the value of ηa2 by intentionally introducing extra loss using a half-wave plate and a polarizing beamsplitter. The transmission ηb2 includes the effect of imperfect detector efficiency on the measurement of the conjugate beam. GDa and GDb are the gains of the probe and conjugate detectors, respectively. (b) 4WM scheme in the source cell. νp, νc and ν1 are the optical frequencies of probe, conjugate and pump beams, respectively, and νp + νc = 2ν1. (c) 4WM scheme in the PSA cell. ν1, ν2 are the optical frequencies of the two pump beams, and νp is the optical frequency of the probe beam, and ν1 + ν2 = 2νp. For both (b) and (c): the width of the excited state in the level diagram represents the Doppler broadened line, Δ is the one-photon detuning, δ = −4 MHz is the two-photon detuning, and νHF = 3.036 GHz is the hyperfine splitting in the electronic ground state of 85Rb.
Fig. 3
Fig. 3 Intensity correlation coefficient of the probe and conjugate beams as a function of probe transmission ηa2. Blue points and lines are for the source gain Gsource = 3.3. Red points and dashed lines are for the source gain Gsource = 3.0. The diamonds (both open and solid) are for the PSA cell removed from the probe path (i.e., GPSA = 1). The circles are for the PSA present with a gain of 2.3 (open circles) and 3.5 (solid circles), respectively. The solid and dashed lines are theoretical predictions calculated from Eqs. (5) and (10) using the source parameters given in the Appendix.
Fig. 4
Fig. 4 Intensity-difference squeezing measured from the time traces of the intensities of modes af and bf, as a function of probe transmission ηa2. Blue points and lines are for the source gain Gsource = 3.3. Red points and dashed lines are for the source gain Gsource = 3.0. The diamonds (both open and solid) are for the PSA cell removed from the probe path (i.e., GPSA = 1). The circles are for the PSA present with a gain of 2.3 (open circles) and 3.5 (solid circles), respectively. The solid and dashed lines are theoretical predictions calculated from Eqs. (5) and (11) using the source parameters given in the Appendix.
Fig. 5
Fig. 5 Intensity-difference squeezing measured with the detector gain adjustments described in the text. Blue points and lines are for the source gain Gsource = 3.3. Red points and dashed lines are for the source gain Gsource = 3.0. The diamonds (both open and solid) are for the PSA cell removed from the probe path (i.e., GPSA = 1). The circles are for the PSA present with a gain of 2.3 (open circles) and 3.5 (solid circles), respectively. The solid and dashed lines are theoretical predictions calculated from Eqs. (5) and (11) using the source parameters given in the Appendix.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ϕ PSA = ( ϕ 1 ϕ p ) + ( ϕ 2 ϕ p ) ,
V ^ 0 = ( a ^ 0 a ^ 0 b ^ 0 b ^ 0 ) and V ^ f = ( a ^ f a ^ f b ^ f b ^ f ) .
F 1 = ( cosh r 0 0 sinh r 0 cosh r sinh r 0 0 sinh r cosh r 0 sinh r 0 0 cosh r )
F 2 = ( cosh s e i ϕ PSA sinh s 0 0 e i ϕ PSA sinh s cosh s 0 0 0 0 1 0 0 0 0 1 ) ,
V ^ f = T 2 ( F 2 [ T 1 ( F 1 V ^ 0 ) + L ^ 1 ] ) + L ^ 2 ,
T 1 = ( η a 1 0 0 0 0 η a 1 0 0 0 0 η b 0 0 0 0 η b ) ,
T 2 = ( η a 2 0 0 0 0 η a 2 0 0 0 0 1 0 0 0 0 1 ) ,
L ^ 1 = ( i 1 η a 1 u ^ a 1 i 1 η a 1 u ^ a 1 i 1 η b u ^ b i 1 η b u ^ b ) ,
L ^ 2 = ( i 1 η a 2 u ^ a 2 i 1 η a 2 u ^ a 2 0 0 ) .
M XC = ( n ^ a n ^ a ) ( n ^ b n ^ b ) Δ 2 n ^ a Δ 2 n ^ b ,
M SQ = 10 log 10 [ Δ 2 ( n ^ a n ^ b ) Δ 2 n ^ SN ] ,
P r = P s η a 1 off η a 2 ,
P p = P s G source η a 1 on η a 2 ,
P c = P s ( G source 1 ) η b 1 η b 2 ,
P p P r = G source η a 1 on η a 1 off = G source η 4 WM ,
P c P r = ( G source 1 ) η b 1 η b 2 η a 1 off η a 2 .

Metrics