Abstract

The spectroscopic characteristics, continuous-wave (CW) and mode-locking laser performances of Tm,Y:CaF2 disordered crystal were studied. A maximum CW output power of 586 mW was obtained with a slope efficiency of 26%. The Tm,Y:CaF2 mode-locked laser could operate in two states: single-wavelength mode locking or dual-wavelength synchronous mode locking. The single-wavelength mode-locked laser generated pulses with pulse duration of 22 ps, repetition rate of 99 MHz, and pulse energy of 1.15 nJ at 1887 nm. Alternatively, the laser could also be mode-locked simultaneously at 1880.7 nm and 1889.0 nm wavelengths. The beating modulation in autocorrelation trace shows that the dual-wavelength pulses were temporally synchronous.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond mode-locked Nd,La:CaF2 disordered crystal laser

Huibo Wang, Jiangfeng Zhu, Ziye Gao, Yang Yu, Kai Liu, Junli Wang, Zhiyi Wei, Jian Liu, Dapeng Jiang, Fengkai Ma, and Liangbi Su
Opt. Mater. Express 6(7) 2184-2189 (2016)

Diode-pumped tri-wavelength synchronously mode-locked Yb,Y:CaF2 laser

Chun Li, Jie Liu, Liangbi Su, Dapeng Jiang, Xiaobo Qian, and Jun Xu
Appl. Opt. 54(32) 9509-9512 (2015)

Generation of 84-fs pulses from a mode-locked Tm:CNNGG disordered garnet crystal laser

Zhongben Pan, Yicheng Wang, Yongguang Zhao, Hualei Yuan, Xiaojun Dai, Huaqiang Cai, Ji Eun Bae, Sun Young Choi, Fabian Rotermund, Xavier Mateos, Josep Maria Serres, Pavel Loiko, Uwe Griebner, and Valentin Petrov
Photon. Res. 6(8) 800-804 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
    [Crossref] [PubMed]
  2. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  3. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
    [Crossref] [PubMed]
  4. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  5. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  6. J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
    [Crossref] [PubMed]
  7. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  8. V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
    [Crossref] [PubMed]
  9. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
    [Crossref] [PubMed]
  10. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 µm,” Opt. Lett. 35(3), 3027–3029 (2010).
    [Crossref] [PubMed]
  11. Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
    [Crossref]
  12. Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
    [Crossref]
  13. W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).
  14. M. A. Hughes, M. A. Lourenço, J. D. Carey, B. Murdin, and K. P. Homewood, “Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies,” Opt. Express 22(24), 29292–29303 (2014).
    [Crossref] [PubMed]
  15. A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
    [Crossref]
  16. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  17. J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
    [Crossref]
  18. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]
  19. C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
    [Crossref]
  20. Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
    [Crossref]
  21. S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
    [Crossref]
  22. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
    [Crossref]
  23. P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
    [Crossref]
  24. A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
    [Crossref]
  25. X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
    [Crossref]
  26. D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
    [Crossref]
  27. F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fiber lasers,” J. Mod. Opt. 52(8), 1053–1063 (2005).
    [Crossref]

2017 (3)

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]

2015 (5)

2014 (2)

M. A. Hughes, M. A. Lourenço, J. D. Carey, B. Murdin, and K. P. Homewood, “Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies,” Opt. Express 22(24), 29292–29303 (2014).
[Crossref] [PubMed]

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

2013 (3)

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
[Crossref] [PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

2009 (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2008 (2)

2006 (1)

2005 (1)

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fiber lasers,” J. Mod. Opt. 52(8), 1053–1063 (2005).
[Crossref]

2004 (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

2000 (1)

1997 (1)

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

1984 (1)

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Aleksandrov, V.

Aschehoug, P.

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

Bai, J. T.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Bai, Y.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Bendall, P. J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Berkowski, M.

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

Bian, J.

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Brown, C. T. A.

Bruneau, D.

Buchvarov, I.

Budni, P. A.

Calvez, S.

Camy, P.

S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Carey, J. D.

Cascales, C.

Catlow, C. R. A.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Chicklis, E. P.

Choi, S. Y.

Corish, J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Dawson, M. D.

Díaz, F.

Doualan, A.

S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
[Crossref]

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Fang, J. X.

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Fedorov, P. P.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Feng, C.

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Flamant, P. H.

Fuhrberg, P.

Gao, W. L.

Garibin, E. A.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Gibert, F.

Gluth, A.

Griebner, U.

Guina, M.

Gunter, P.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Guo, J.

Guo, S. Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Guo, X.

Gupta, J. A.

Han, X.

Härkönen, A.

He, J. L.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Homewood, K. P.

Huber, G.

Hughes, M. A.

Jacobs, P. W. M.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Jazbinsek, M.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Jiang, D. P.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Jiang, M. H.

King, T. A.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fiber lasers,” J. Mod. Opt. 52(8), 1053–1063 (2005).
[Crossref]

Kisel, V. E.

Kong, L. C.

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Koopmann, P.

Kuleshov, N. V.

Lagatsky, A. A.

Lemons, M. L.

Li, D.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Li, J.

Li, T.

Liu, S. D.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Liu, X.

Loth, C.

Lourenço, M. A.

Luan, C.

Luo, H.

Lyapin, A. A.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Ma, F. K.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Ma, J.

Ma, J. G.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

Majkic, A.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Malov, A. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Mateos, X.

Maze, G.

Medrano, C.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Menard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Michalska, M.

Miller, C. A.

Moncorge, R.

S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Mosto, J. R.

Murdin, B.

Osiko, V. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Paajaste, J.

Pan, Y.

Petelin, A.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Petrov, V.

Pomeranz, L. A.

Qamar, F. Z.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fiber lasers,” J. Mod. Opt. 52(8), 1053–1063 (2005).
[Crossref]

Qi, M.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Qian, L. J.

Qian, X. B.

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Qiao, Z.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

Qin, Z. P.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Ren, Z. Y.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Renard, S.

S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Rotermund, F.

Ruiz, B.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Ryabochkina, P. A.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

RybaRomanowski, W.

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

Schmidt, A.

Serrano, M. D.

Shi, R. P.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Sibbett, W.

Steinmeyer, G.

Su, L.

Su, L. B.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Suomalainen, S.

Swiderski, J.

Tang, D. Y.

Tang, F.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Tao, X. T.

Tonelli, M.

Ushakov, S. N.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Veronesi, S.

Viana, B.

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, J. Y.

Wang, Q. P.

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Wang, S.

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Wang, Y.

Xie, G. Q.

Xu, J.

X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Xu, J. L.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Xu, X. D.

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Yang, H.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Yang, K.

Yang, Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Yeom, D. I.

Yu, H. H.

Yuan, P.

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
[Crossref] [PubMed]

Zaldo, C.

Zgonik, M.

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Zhan, Y. Y.

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Zhang, B. Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

Zhang, H. J.

Zhang, H. N.

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Zhang, Q.

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

Zhao, B.

Zhao, S.

Zheng, L.

Appl. Opt. (1)

Appl. Phys. B. (2)

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B. 107(1), 53–58 (2012).
[Crossref]

W. RybaRomanowski, M. Berkowski, B. Viana, and P. Aschehoug, “Relaxation dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tm3++Tb3+,” Appl. Phys. B. 64(5), 525–529 (1997).

Appl. Phys. Express (1)

Y. Bai, M. Qi, S. Wang, R. P. Shi, D. Li, Z. Y. Ren, and J. T. Bai, “CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror,” Appl. Phys. Express 6(10), 102701 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

CrystEngComm (1)

D. P. Jiang, Y. Y. Zhan, Q. Zhang, F. K. Ma, L. B. Su, F. Tang, X. B. Qian, and J. Xu, “Nd, Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure,” CrystEngComm 17(38), 7398–7405 (2015).
[Crossref]

IEEE Photonics J. (2)

Z. P. Qin, G. Q. Xie, L. C. Kong, P. Yuan, L. J. Qian, X. D. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 Laser at 2-µm wavelength,” IEEE Photonics J. 7(1), 1500205 (2015).
[Crossref]

Z. P. Qin, Z. Qiao, G. Q. Xie, P. Yuan, J. G. Ma, L. J. Qian, D. P. Jiang, F. K. Ma, F. Tang, and L. B. Su, “Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser,” IEEE Photonics J. 9(2), 1502007 (2017).
[Crossref]

J. Alloys Compd. (1)

S. Renard, P. Camy, A. Doualan, and R. Moncorge, “CaF2 doped with Tm3+: A cluster model,” J. Alloys Compd. 451(1–2), 71–73 (2008).
[Crossref]

J. Mod. Opt. (1)

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fiber lasers,” J. Mod. Opt. 52(8), 1053–1063 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Laser Phys. Lett. (1)

C. Feng, H. N. Zhang, Q. P. Wang, and J. X. Fang, “Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal,” Laser Phys. Lett. 14(4), 045804 (2017).
[Crossref]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Opt. Express (6)

A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
[Crossref] [PubMed]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
[Crossref] [PubMed]

M. A. Hughes, M. A. Lourenço, J. D. Carey, B. Murdin, and K. P. Homewood, “Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies,” Opt. Express 22(24), 29292–29303 (2014).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. (1)

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Absorption spectra and (b) fluorescence spectra of 3at.% Tm:CaF2 and 3at.% Tm, 3at.% Y:CaF2 crystals at 300 K.
Fig. 2
Fig. 2 Experimental setup of Tm,Y:CaF2 laser. L1, L2: convex lenses with the same focal length of 100 mm; M1, M2 and M3: concave mirrors with the same radius of curvature (ROC) of −100 mm; OC: output coupler.
Fig. 3
Fig. 3 CW laser performance of Tm,Y:CaF2. (a) output power versus absorbed pump power with 0.5%, 2% and 5% couplers. (b) CW laser spectra for 0.5%, 2% and 5% couplers.
Fig. 4
Fig. 4 CW laser spectra vary with absorbed pump power for 0.5% output coupler. Blue line is the spectrum for 0.5W absorbed pump power, green line is for 0.86 W, red line is for 1.5 W and violet line is for 2.46 W.
Fig. 5
Fig. 5 (a) and (b) are mode-locked pulse trains in the time scale of 1 ms/div and 20 ns/div, respectively; (c) and (d) are fundamental and harmonic radio-frequency spectra of the mode-locked pulses.
Fig. 6
Fig. 6 (a) Average output power versus absorbed pump power (blue line: linear fitting); (b) autocorrelation trace of the mode-locked pulses. Inset is the mode-locking optical spectrum.
Fig. 7
Fig. 7 (a) Average output power versus absorbed pump power and (b) radio-frequency spectrum in dual-wavelength mode-locking operation.
Fig. 8
Fig. 8 The optical spectrum (a) and autocorrelation trace (b) of dual-wavelength synchronously mode-locked pulses. Inset in Fig. 7(b) is the zoomed beating pulses.

Metrics