Abstract

We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion

Shuo Liu, Fengping Yan, Yang Li, Luna Zhang, Zhuoya Bai, Hong Zhou, and Yafei Hou
Photon. Res. 4(6) 318-321 (2016)

Experimental observation of different soliton types in a net-normal group-dispersion fiber laser

Zhongyao Feng, Qiangzhou Rong, Xueguang Qiao, Zhihua Shao, and Dan Su
Appl. Opt. 53(27) 6237-6242 (2014)

Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion

Lei Zhang, A. R. El-Damak, Yan Feng, and Xijia Gu
Opt. Express 21(10) 12014-12021 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  2. J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
    [Crossref]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  4. T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
    [Crossref] [PubMed]
  5. E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
    [Crossref]
  6. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  7. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
    [Crossref]
  8. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  9. C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
    [Crossref] [PubMed]
  10. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
    [Crossref]
  11. D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
    [Crossref] [PubMed]
  12. D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
    [Crossref]
  13. U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and Ph. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33(5), 825–833 (2016).
    [Crossref]
  14. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20(19), 2009–2011 (1995).
    [Crossref] [PubMed]
  15. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22(18), 1409–1411 (1997).
    [Crossref] [PubMed]
  16. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sowrensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15(4), 1315 (1998).
    [Crossref]
  17. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
    [Crossref] [PubMed]
  18. I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
    [Crossref]
  19. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref] [PubMed]
  20. X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5(1), 9399 (2015).
    [Crossref] [PubMed]
  21. S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
    [Crossref]
  22. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
    [Crossref] [PubMed]
  23. R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
    [Crossref]
  24. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17(6), 417–419 (1992).
    [Crossref] [PubMed]
  25. L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
    [Crossref]
  26. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  27. A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34(14), 2135–2137 (2009).
    [Crossref] [PubMed]

2016 (3)

I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
[Crossref]

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and Ph. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33(5), 825–833 (2016).
[Crossref]

2015 (2)

2014 (2)

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

2013 (3)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
[Crossref] [PubMed]

2012 (3)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2003 (1)

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

2002 (1)

1998 (3)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sowrensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15(4), 1315 (1998).
[Crossref]

1997 (2)

1995 (1)

1992 (1)

Amrani, F.

Andral, U.

Andrekson, P. A.

Bergman, K.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Billard, F.

Boivinet, S.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Boyu, W.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

Buguet, J.

Caiyun, L.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

Chamorovskiy, A.

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

Chen, C.-J.

Christiansen, P. L.

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Clausen, C. B.

Coen, S.

Collings, B. C.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Cristiani, I.

Cui, Y.

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5(1), 9399 (2015).
[Crossref] [PubMed]

Diddams, S. A.

Emplit, P.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Fodil, R. S.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Fontana, F.

Fotiadi, A.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Franco, P.

Gray, S.

Grelu, P.

Grelu, Ph.

Grudinin, A. B.

Gumenyuk, R.

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

Haboucha, A.

Habruseva, T.

Haelterman, M.

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Hegarty, S. P.

Hernandez, Y.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Hertz, E.

Hollberg, L. W.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Huyet, G.

Jian, W.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

Kéfélian, F.

Kellou, A.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Knox, W. H.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Komarov, A.

Korobko, D. A.

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

Kutz, J. N.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Lapin, V. A.

I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
[Crossref]

Leblond, H.

Lecaplain, C.

Lecourt, J.-B.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5(1), 9399 (2015).
[Crossref] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Luo, A.-P.

Luo, Z.-C.

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Mégret, P.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Menyuk, C. R.

Midrio, M.

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Nakazawa, M.

O’Donoghue, S.

Okhotnikov, O. G.

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Quiroga-Teixeiro, M.

Rantamäki, A.

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

Rebrova, N.

Romagnoli, M.

Saarinen, E. J.

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

Salhi, M.

Sanchez, F.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schnatz, H.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Sementsov, D. I.

I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
[Crossref]

Si Fodil, R.

Sowrensen, M. P.

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Sylvestre, T.

Wai, P. K. A.

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Wuilpart, M.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Xu, W.-C.

Yang, C.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Ye, J.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Yizhi, G.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

Yoshida, E.

Yuhua, L.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

Zolotovskii, I. O.

I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
[Crossref]

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

Electron. Lett. (1)

E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48(21), 1355–1357 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-µm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photonics Technol. Lett. 10(9), 1250–1252 (1998).
[Crossref]

J. Opt. Soc. Am. B (4)

Nat. Commun. (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

D. A. Korobko, R. Gumenyuk, I. O. Zolotovskii, and O. G. Okhotnikov, “Multisoliton complexes in fiber lasers,” Opt. Fiber Technol. 20(6), 593–609 (2014).
[Crossref]

Opt. Lett. (8)

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22(18), 1409–1411 (1997).
[Crossref] [PubMed]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34(14), 2135–2137 (2009).
[Crossref] [PubMed]

T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
[Crossref] [PubMed]

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17(6), 417–419 (1992).
[Crossref] [PubMed]

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20(19), 2009–2011 (1995).
[Crossref] [PubMed]

Opt. Spectrosc. (1)

I. O. Zolotovskii, V. A. Lapin, and D. I. Sementsov, “Modulation instability of wave packets in a Gires–Tournois interferometer,” Opt. Spectrosc. 121(1), 95–102 (2016).
[Crossref]

Phys. Rev. A (1)

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and P. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Sci. Rep. (2)

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5(1), 9399 (2015).
[Crossref] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The experimental configuration of the fiber laser with tunable repetition rate [22] and (b) an equivalent laser configuration used for numerical simulations.

Fig. 2
Fig. 2

(a) Normalized spectrum and (b) a pulse train generated at FSR= 18/ τ win ( ~45GHz ), E g =0.08nJ Laser spectrum is shown in comparison with the cavity net gain G=exp( 0 L g g(z)dz ), losses and MZI transmission spectra | T MZI |.

Fig. 3
Fig. 3

Dynamics of laser mode-locking governed by NPR mechanism at FSR= 18/ τ win ( ~45GHz ), E g =0.08nJ. (a) Spectral density; (b) intensity and (с) phases of four modes centered around a MZI transmission | T MZI | peak.

Fig. 4
Fig. 4

(a) A map of the saturation energies E g corresponding to successful mode-locking. (b) Pulse trains calculated for points A, B and C.

Fig. 5
Fig. 5

Normalized laser spectrum in comparison with the cavity net gain, losses and filter transmission spectra calculated for laser configurations with (a) MZI FSR= 200/ τ win ,( ~490GHz ), E g =0.008nJ – point A in Fig. 4(a); (b, c) DMZI FSR= 200/ τ win , ( ~490GHz ), E g =0.018nJ (b) and FSR= 400/ τ win , ( ~980GHz ), E g =0.0025nJ(c) – points B, C in Fig. 4 (a), respectively.

Fig. 6
Fig. 6

Dynamics of laser mode-locking governed by D-FWM mechanism at FSR= 200/ τ win (~490GHz), E g =0.008nJ– point A in Fig. 4(a). (a) Spectral density, (b) intensity and (с) phases evolution of four first modes centered around the MZI transmission T MZI peak.

Tables (2)

Tables Icon

Table 1 The cavity parameters used for calculations.

Tables Icon

Table 2 Comparison of the pulses generated with MZI and DMZI configurations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t rep = n c ΔL 1 FSR
A z i β 2g 2 2 A t 2 i γ g | A | 2 A= gA 2 + β 2f 2 2 A t 2
g(z,t)=g(z)= g 0 ( 1+ 1 E g 0 τ win | A(z,t) | 2 dt ) 1
A X z i β 2 2 2 A X t 2 iγ( | A X | 2 + 2 3 | A Y | 2 ) A X i 3 γ A X * A Y 2 =0 A Y z i β 2 2 2 A Y t 2 iγ( | A Y | 2 + 2 3 | A X | 2 ) A Y i 3 γ A Y * A X 2 =0
| T SA | 2 = cos 2 φ 1 cos 2 φ 2 + sin 2 φ 1 sin 2 φ 2 + 1 2 sin2 φ 1 sin2 φ 2 cos( θ+Δ ϕ NL )
Δ ϕ NL = γ | A | 2 L SMF 3 cos2 φ 1

Metrics