Abstract

A simple and compact spectral-broadening system is presented that is based on a single-stage statically pressurized Ar filled hollow core fiber. By optimizing the inner diameter of the hollow core fiber, a bandwidth of 300 nm is obtained. This is the broadest bandwidth known to date with millijoule level energy near the 1-μm wavelength by a single stage gas filled hollow core fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of intense 1.5-cycle pulses generation at 3.6 µm through a pressure gradient hollow-core fiber

Zhiyuan Huang, Ding Wang, Ye Dai, Yanyan Li, Xiaoyang Guo, Wenkai Li, Yun Chen, Jun Lu, Zhengzheng Liu, Ruirui Zhao, and Yuxin Leng
Opt. Express 24(9) 9280-9287 (2016)

Energetic radially polarized few-cycle pulse compression in gas-filled hollow-core fiber

Yu Zhao, Ding Wang, Ruirui Zhao, and Yuxin Leng
Opt. Express 25(17) 20866-20876 (2017)

Divided-pulse compression with gas-filled hollow-core fiber for generation of high-energy few-cycle pulses

Ding Wang, Yuxin Leng, and Zhiyuan Huang
J. Opt. Soc. Am. B 31(6) 1248-1254 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
    [Crossref]
  2. M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
    [Crossref] [PubMed]
  3. X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “Demonstration of a photonic crystal surface-emitting laser pumped Yb:YAG laser,” Opt. Lett. 41(20), 4653–4655 (2016).
    [Crossref] [PubMed]
  4. J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).
  5. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36(22), 4425–4427 (2011).
    [Crossref] [PubMed]
  6. P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
    [Crossref] [PubMed]
  7. J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, and D. Tang, “Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser,” Opt. Lett. 41(5), 890–893 (2016).
    [Crossref] [PubMed]
  8. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  9. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
    [Crossref]
  10. C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
    [Crossref]
  11. D. Wang, Y. Leng, and Z. Huang, “Divided-pulse compression with gas-filled hollow-core fiber for generation of high-energy few-cycle pulses,” J. Opt. Soc. Am. B 31(6), 1248–1254 (2014).
    [Crossref]
  12. G. Andriukaitis, D. Kartashov, D. Lorenc, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, J. Limpert, T. Clausnitzer, E.-B. Kley, A. Voronin, and A. Zheltikov, “Hollow-fiber compression of 6 mJ pulses from a continuous-wave diode-pumped single-stage Yb,Na:CaF2 chirped pulse amplifier,” Opt. Lett. 36(10), 1914–1916 (2011).
    [Crossref] [PubMed]
  13. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
    [Crossref] [PubMed]
  14. I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
    [Crossref]
  15. J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
    [Crossref] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2016 (2)

2015 (2)

M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
[Crossref] [PubMed]

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

2014 (3)

2013 (1)

2011 (2)

2010 (1)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

2009 (1)

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

2005 (1)

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

1998 (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Ahmad, I.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Andriukaitis, G.

Baltuška, A.

Cheng, Z.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Clausnitzer, T.

Cormier, E.

Danielius, R.

De Silvestri, S.

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Demmler, S.

Descamps, D.

Divoky, M.

Druon, F.

Eidam, T.

Erbert, G.

Fiebig, C.

Fujimoto, Y.

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Fujioka, K.

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Georges, P.

Giniunas, L.

Gotschall, T.

Gottschall, T.

Griebner, U.

Guo, X.

Hädrich, S.

Hirose, K.

Hoffmann, A.

Huang, H.

Huang, Z.

Hwang, S.

Ishizaki, K.

Jitsuno, T.

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Kan, H.

Karsch, S.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Kartashov, D.

Kawanaka, J.

X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “Demonstration of a photonic crystal surface-emitting laser pumped Yb:YAG laser,” Opt. Lett. 41(20), 4653–4655 (2016).
[Crossref] [PubMed]

M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
[Crossref] [PubMed]

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Kawashima, T.

Klenke, A.

Kley, E.-B.

Klingebiel, S.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Krausz, F.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Krebs, M.

Leng, Y.

Limpert, J.

Liu, J.

Loh, K. P.

Lorenc, D.

Lucianetti, A.

Ma, J.

Major, Z.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Miyanaga, N.

X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “Demonstration of a photonic crystal surface-emitting laser pumped Yb:YAG laser,” Opt. Lett. 41(20), 4653–4655 (2016).
[Crossref] [PubMed]

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Mocek, T.

Ning, K.

Nisoli, M.

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Noda, S.

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Pervak, V.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Petrov, V.

Popp, A.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Pugžlys, A.

Qian, L.

Rothhardt, J.

Sansone, G.

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

Sartania, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Schmidt, A.

Sévillano, P.

Siebold, M.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Stagira, S.

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Sugiyama, T.

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Tang, D.

Tempea, G.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

Tokita, S.

Trushin, S.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Tsubakimoto, K.

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Tünnermann, A.

Voronin, A.

Vozzi, C.

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

Wandt, C.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Wang, D.

Wang, J.

Wang, T.-J.

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Watanabe, A.

Xie, G.

Xu, X.

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Yoshida, A.

A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36(22), 4425–4427 (2011).
[Crossref] [PubMed]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Yoshida, H.

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Zhang, H.

Zheltikov, A.

Appl. Phys. B (2)

C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimal spectral broadening in hollow-fiber compressor systems,” Appl. Phys. B 80(3), 285–289 (2005).
[Crossref]

I. Ahmad, S. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.-J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, and S. Karsch, “Frontend light source for short-pulse pumped OPCPA system,” Appl. Phys. B 97(3), 529–536 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4(2), 414–420 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

J. Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, and N. Miyanaga, “Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification,” J. Phys. Conf. Ser. 688(1), 012044 (2015).

Laser Phys. (1)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Opt. Lett. (8)

M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
[Crossref] [PubMed]

X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “Demonstration of a photonic crystal surface-emitting laser pumped Yb:YAG laser,” Opt. Lett. 41(20), 4653–4655 (2016).
[Crossref] [PubMed]

A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36(22), 4425–4427 (2011).
[Crossref] [PubMed]

P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
[Crossref] [PubMed]

J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, and D. Tang, “Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser,” Opt. Lett. 41(5), 890–893 (2016).
[Crossref] [PubMed]

G. Andriukaitis, D. Kartashov, D. Lorenc, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, J. Limpert, T. Clausnitzer, E.-B. Kley, A. Voronin, and A. Zheltikov, “Hollow-fiber compression of 6 mJ pulses from a continuous-wave diode-pumped single-stage Yb,Na:CaF2 chirped pulse amplifier,” Opt. Lett. 36(10), 1914–1916 (2011).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral broadening factor (red solid line) and transmission (blue dashed line) with respect to HCF inner diameter for a fiber length of 1 m.

Fig. 2
Fig. 2

Layout of HCF system. Regen: regenerative amplifier; HCF: hollow core fiber.

Fig. 3
Fig. 3

Yb:CaF2 based RA output (a) spectrum and autocorrelation trace. (b) beam quality and focus spot beam shape.

Fig. 4
Fig. 4

(a) Experimental spectra of output pulses from HCF with 0.94-mJ input energy at different Ar pressures (grey areas). The red solid lines are numerical solutions of the nonlinear Schrödinger equation. The blue dashed lines are visual guides. (b) Experimental output energy and efficiency with 0.94-mJ input energy at different Ar pressures.

Fig. 5
Fig. 5

(a) Experimental spectrum of output pulse from HCF with 0.94 mJ input energy at 3 bar Ar pressure (red solid line). The blue dashed line shows the curve fitted by a 4th super Gaussian function. (b) Calculated FTL pulse shape.

Fig. 6
Fig. 6

(a) Energy stability of Yb:CaF2 based RA (black dot) and Ar filled HCF (red dot). (b) Spectral stability under Ar 3 bar pressure.

Fig. 7
Fig. 7

Measured beam quality from HCF after re-collimation with a concave mirror. The inset shows the near and far fields. The calculated values of M2 are 1.2 and 1.1 in the x and y directions, respectively.

Fig. 8
Fig. 8

Pulse dispersion compensated by Dazzler and measured by Wizzler: (a) reconstructed spectral intensity (red solid line) and phase (blue dashed line); (b) measured temporal intensity (red solid line) and calculated FTL pulse shape (blue dashed line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U z + α 2 U+ i 2 β 2 2 U T 2 1 6 β 3 3 U T 3 =iγ P 0 [ | U | 2 U+ i ω 0 T ( | U | 2 U ) ]
α= ( 2.405 2π ) 2 8 λ 0 2 D 3 κ 2 +1 κ 2 1
η= η c e αL
F= Δ ν out Δ ν in = ( 1+ 4 3 3 ϕ max 2 ) 1/2
F max 0.88 ϕ max =0.88 λ 0 L eff A eff

Metrics