Abstract

Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires

John Canning, Hadrien Weil, Masood Naqshbandi, Kevin Cook, and Matthieu Lancry
Opt. Mater. Express 3(2) 284-294 (2013)

Jet printing of convex and concave polymer micro-lenses

M. Blattmann, M. Ocker, H. Zappe, and A. Seifert
Opt. Express 23(19) 24525-24536 (2015)

Control of reflectance of liquid droplets by means of electrowetting

Vincent H. Kwong, Michele A. Mossman, and Lorne A. Whitehead
Appl. Opt. 43(4) 808-813 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
    [Crossref]
  2. M. K. Seely, “Irregular fog as a water source for desert dune beetles,” Oecologia 42(2), 213–227 (1979).
    [Crossref] [PubMed]
  3. S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
    [Crossref]
  4. C. Ladiges, “Aussie innovation helps hunt down gravitational waves,” https://www.csiro.au/en/News/News-releases/2016/Aussie-innovation-helps-hunt-down-gravitational-waves .
  5. CO.FO.ME.GRA., “Quality control in the printing industry,” http://www.cofomegra.it/www.cofomegra.it/documents/QUALITY_CONTROLS.pdf .
  6. J. Canning, H. Weil, M. Naqshbandi, K. Cook, and M. Lancry, “Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires,” Opt. Mater. Express 3(2), 284 (2013).
    [Crossref]
  7. M. Chaplin, “Do we underestimate the importance of water in cell biology?” Nat. Rev. Mol. Cell Biol. 7(11), 861–866 (2006).
    [Crossref] [PubMed]
  8. X. Wang and R. A. Weiss, “A facile method for preparing sticky, hydrophobic polymer surfaces,” Langmuir 28(6), 3298–3305 (2012).
    [Crossref] [PubMed]
  9. G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
    [Crossref]
  10. M. Xu and H. Dehghanpour, “Advances in understanding wettability of gas shales,” Energy Fuels 28(7), 4362–4375 (2014).
    [Crossref]
  11. A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
    [Crossref] [PubMed]
  12. B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
    [Crossref] [PubMed]
  13. A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
    [Crossref]
  14. P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
    [Crossref]
  15. A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
    [Crossref]
  16. T. D. Blake, “The physics of moving wetting lines,” J. Colloid Interface Sci. 299(1), 1–13 (2006).
    [Crossref] [PubMed]
  17. X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
    [Crossref]
  18. Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
    [Crossref] [PubMed]
  19. H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
    [Crossref] [PubMed]
  20. O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
    [Crossref]
  21. B. M. Colosimo, F. Mammarella, and S. Petrò, “Quality control of manufactured surfaces,” in Frontiers in Statistical Quality Control 9, H.-J. Lenz, P.-T. Wilrich, and W. Schmid, eds. (Physica-Verlag HD, 2010), pp. 55–70.
  22. F. Bottiglione and G. Carbone, “An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces,” J. Phys. Condens. Matter 27(1), 015009 (2015).
    [Crossref] [PubMed]
  23. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
    [Crossref]
  24. M. Rauscher and S. Dietrich, “Wetting phenomena in nanofluidics,” Annu. Rev. Mater. Res. 38(1), 143–172 (2008).
    [Crossref]
  25. M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
    [Crossref]
  26. W. Wang and A. Gupta, “Investigation of the effect of temperature and pressure on wettability using modified pendant drop method,” in SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 1995), pp. 117–126.
    [Crossref]
  27. P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
    [Crossref]
  28. D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. 38(1), 71–99 (2008).
    [Crossref]
  29. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  30. D. Bonneau, J. W. Silverstone, and M. G. Thompson, Silicon Quantum Photonics, in L. Pavesi and J. D. Lockwood, eds. (Springer Berlin Heidelberg, 2016), pp. 41–82.
  31. J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
    [Crossref]
  32. J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
    [Crossref]
  33. C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
    [Crossref] [PubMed]
  34. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
    [Crossref] [PubMed]
  35. G. L. Mack, “The determination of contact angles from measurements of the dimensions of small bubbles and drops: The spheroidal segment method for acute angles,” J. Phys. Chem. 40(2), 159–167 (1935).
    [Crossref]
  36. J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
    [Crossref]
  37. D. Kwok and A. Neumann, “Contact angle interpretation in terms of solid surface tension,” Colloids Surfaces A Physicochem. Eng. Asp. 161(1), 31–48 (2000).
    [Crossref]
  38. C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
    [Crossref]
  39. A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
    [Crossref]
  40. B. Arkles, “Hydrophobicity, hydrophilicity and silanes,” Paint Coatings Ind. 114 (2006).
  41. B. R. Ray and F. E. Bartell, “Hysteresis of contact angle of water on paraffin. Effect of surface roughness and of purity of paraffin,” J. Colloid Sci. 8(2), 214–223 (1953).
    [Crossref]
  42. C. S. Wojtysiak, “Radiative cooling surface coatings,” U.S. patent US7503971 B2 (2009).
  43. SkyCool Pty Ltda, “SkyCool,” (2016).
  44. J. Canning, “Smartphone spectrometers and other instrumentation,” SPIE Newsroom, 42–44 (2016).
  45. M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
    [Crossref] [PubMed]
  46. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
    [Crossref] [PubMed]
  47. M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
    [Crossref]
  48. J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
    [Crossref] [PubMed]

2016 (1)

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

2015 (5)

F. Bottiglione and G. Carbone, “An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces,” J. Phys. Condens. Matter 27(1), 015009 (2015).
[Crossref] [PubMed]

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
[Crossref] [PubMed]

M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
[Crossref] [PubMed]

2014 (2)

A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
[Crossref]

M. Xu and H. Dehghanpour, “Advances in understanding wettability of gas shales,” Energy Fuels 28(7), 4362–4375 (2014).
[Crossref]

2013 (3)

G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
[Crossref]

J. Canning, H. Weil, M. Naqshbandi, K. Cook, and M. Lancry, “Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires,” Opt. Mater. Express 3(2), 284 (2013).
[Crossref]

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

2012 (1)

X. Wang and R. A. Weiss, “A facile method for preparing sticky, hydrophobic polymer surfaces,” Langmuir 28(6), 3298–3305 (2012).
[Crossref] [PubMed]

2011 (3)

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
[Crossref]

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

2008 (3)

D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. 38(1), 71–99 (2008).
[Crossref]

M. Rauscher and S. Dietrich, “Wetting phenomena in nanofluidics,” Annu. Rev. Mater. Res. 38(1), 143–172 (2008).
[Crossref]

O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
[Crossref]

2007 (3)

P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
[Crossref]

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
[Crossref]

2006 (5)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

M. Chaplin, “Do we underestimate the importance of water in cell biology?” Nat. Rev. Mol. Cell Biol. 7(11), 861–866 (2006).
[Crossref] [PubMed]

T. D. Blake, “The physics of moving wetting lines,” J. Colloid Interface Sci. 299(1), 1–13 (2006).
[Crossref] [PubMed]

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

2004 (1)

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

2001 (1)

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

2000 (3)

D. Kwok and A. Neumann, “Contact angle interpretation in terms of solid surface tension,” Colloids Surfaces A Physicochem. Eng. Asp. 161(1), 31–48 (2000).
[Crossref]

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

1999 (1)

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

1998 (1)

A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
[Crossref]

1988 (1)

C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
[Crossref]

1985 (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[Crossref]

1979 (1)

M. K. Seely, “Irregular fog as a water source for desert dune beetles,” Oecologia 42(2), 213–227 (1979).
[Crossref] [PubMed]

1953 (1)

B. R. Ray and F. E. Bartell, “Hysteresis of contact angle of water on paraffin. Effect of surface roughness and of purity of paraffin,” J. Colloid Sci. 8(2), 214–223 (1953).
[Crossref]

1946 (1)

W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
[Crossref] [PubMed]

1935 (1)

G. L. Mack, “The determination of contact angles from measurements of the dimensions of small bubbles and drops: The spheroidal segment method for acute angles,” J. Phys. Chem. 40(2), 159–167 (1935).
[Crossref]

Arafat Hossain, M.

Ast, S.

M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
[Crossref] [PubMed]

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

Austad, T.

P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
[Crossref]

Azzaroni, O.

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

Bartell, F. E.

B. R. Ray and F. E. Bartell, “Hysteresis of contact angle of water on paraffin. Effect of surface roughness and of purity of paraffin,” J. Colloid Sci. 8(2), 214–223 (1953).
[Crossref]

Bigelow, W. C.

W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
[Crossref] [PubMed]

Blake, T. D.

T. D. Blake, “The physics of moving wetting lines,” J. Colloid Interface Sci. 299(1), 1–13 (2006).
[Crossref] [PubMed]

Borruto, A.

A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
[Crossref]

Bottiglione, F.

F. Bottiglione and G. Carbone, “An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces,” J. Phys. Condens. Matter 27(1), 015009 (2015).
[Crossref] [PubMed]

Canning, J.

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
[Crossref] [PubMed]

M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
[Crossref] [PubMed]

J. Canning, H. Weil, M. Naqshbandi, K. Cook, and M. Lancry, “Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires,” Opt. Mater. Express 3(2), 284 (2013).
[Crossref]

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

J. Canning, “Smartphone spectrometers and other instrumentation,” SPIE Newsroom, 42–44 (2016).

Carbone, G.

F. Bottiglione and G. Carbone, “An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces,” J. Phys. Condens. Matter 27(1), 015009 (2015).
[Crossref] [PubMed]

Chaplin, M.

M. Chaplin, “Do we underestimate the importance of water in cell biology?” Nat. Rev. Mol. Cell Biol. 7(11), 861–866 (2006).
[Crossref] [PubMed]

Chaudhury, M. K.

C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
[Crossref]

Cheong, B. H. P.

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

Combes, G.

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

Cook, K.

Crivellone, G.

A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
[Crossref]

Crossley, M. J.

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

Cuppen, H. M.

S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
[Crossref]

de Gennes, P. G.

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[Crossref]

Dehghanpour, H.

M. Xu and H. Dehghanpour, “Advances in understanding wettability of gas shales,” Energy Fuels 28(7), 4362–4375 (2014).
[Crossref]

Dietrich, S.

M. Rauscher and S. Dietrich, “Wetting phenomena in nanofluidics,” Annu. Rev. Mater. Res. 38(1), 143–172 (2008).
[Crossref]

Dupont-Gillain, C. C.

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

Fair, R. B.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Feng, L.

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

Folkard, M.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Fujishima, A.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Ge, B.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Good, R. J.

C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
[Crossref]

Granqvist, B.

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

Gupta, A.

W. Wang and A. Gupta, “Investigation of the effect of temperature and pressure on wettability using modified pendant drop method,” in SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 1995), pp. 117–126.
[Crossref]

Hanemann, T.

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

Hashimoto, K.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Hlady, V.

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

Hofmann, A.

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

Hossain, M. A.

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
[Crossref] [PubMed]

Huck, W. T. S.

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

Hung, O. S.

O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
[Crossref]

Ioppolo, S.

S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
[Crossref]

Jain, V.

A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
[Crossref]

Jamalipour, A.

Järn, M.

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

Järnström, J.

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

Javanmard, H.

A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
[Crossref]

Jiang, G.

G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
[Crossref]

Jiang, L.

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

Kaufmann, C.

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

Kwok, D.

D. Kwok and A. Neumann, “Contact angle interpretation in terms of solid surface tension,” Colloids Surfaces A Physicochem. Eng. Asp. 161(1), 31–48 (2000).
[Crossref]

Lai, J.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Lancry, M.

Lau, A.

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

Li, Y.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
[Crossref]

Liew, O. W.

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

Linnartz, H.

S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
[Crossref]

Liu, H.

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

Mack, G. L.

G. L. Mack, “The determination of contact angles from measurements of the dimensions of small bubbles and drops: The spheroidal segment method for acute angles,” J. Phys. Chem. 40(2), 159–167 (1935).
[Crossref]

Marani, F.

A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
[Crossref]

Men, X.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Michael, B. D.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Müller, M.

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

Nakajima, A.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Naqshbandi, M.

J. Canning, H. Weil, M. Naqshbandi, K. Cook, and M. Lancry, “Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires,” Opt. Mater. Express 3(2), 284 (2013).
[Crossref]

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

Nema, S. K.

A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
[Crossref]

Neumann, A.

D. Kwok and A. Neumann, “Contact angle interpretation in terms of solid surface tension,” Colloids Surfaces A Physicochem. Eng. Asp. 161(1), 31–48 (2000).
[Crossref]

Ng, T. W.

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

Nowak, E.

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

Nysten, B.

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

Pacek, A. W.

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

Petermann, I.

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

Pickett, D. L.

W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
[Crossref] [PubMed]

Pinetown, K.

A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
[Crossref]

Pollack, M. G.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Qian, P. Y.

O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
[Crossref]

Quéré, D.

D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. 38(1), 71–99 (2008).
[Crossref]

Rauscher, M.

M. Rauscher and S. Dietrich, “Wetting phenomena in nanofluidics,” Annu. Rev. Mater. Res. 38(1), 143–172 (2008).
[Crossref]

Ray, B. R.

B. R. Ray and F. E. Bartell, “Hysteresis of contact angle of water on paraffin. Effect of surface roughness and of purity of paraffin,” J. Colloid Sci. 8(2), 214–223 (1953).
[Crossref]

Rosenholm, J. B.

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

Rouxhet, P. G.

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

Rutledge, P. J.

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
[Crossref] [PubMed]

Saghafi, A.

A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
[Crossref]

Satyaprasad, A.

A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
[Crossref]

Seely, M. K.

M. K. Seely, “Irregular fog as a water source for desert dune beetles,” Oecologia 42(2), 213–227 (1979).
[Crossref] [PubMed]

Shenderov, A. D.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Shi, X.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Stitt, E. H.

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

Sunderland, B.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Tåg, C. M.

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

Takai, K.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Thiyagarajan, V.

O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
[Crossref]

Tweheyo, M. T.

P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
[Crossref]

Van Oss, C. J.

C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
[Crossref]

Wang, W.

W. Wang and A. Gupta, “Investigation of the effect of temperature and pressure on wettability using modified pendant drop method,” in SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 1995), pp. 117–126.
[Crossref]

Wang, X.

X. Wang and R. A. Weiss, “A facile method for preparing sticky, hydrophobic polymer surfaces,” Langmuir 28(6), 3298–3305 (2012).
[Crossref] [PubMed]

Wang, Y.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Watanabe, T.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Weil, H.

Weiss, R. A.

X. Wang and R. A. Weiss, “A facile method for preparing sticky, hydrophobic polymer surfaces,” Langmuir 28(6), 3298–3305 (2012).
[Crossref] [PubMed]

Xu, M.

M. Xu and H. Dehghanpour, “Advances in understanding wettability of gas shales,” Energy Fuels 28(7), 4362–4375 (2014).
[Crossref]

Xue, J.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Yamauchi, G.

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

Yan, S.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Yu, Y.

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

Zhai, J.

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

Zhang, M.

G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
[Crossref]

Zhang, P.

P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
[Crossref]

Zhang, Z.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Zhao, W.

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

Zheng, Z.

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

Zhou, F.

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

Zhu, D.

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

Zhu, X.

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Zisman, W. A.

W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (2)

M. Rauscher and S. Dietrich, “Wetting phenomena in nanofluidics,” Annu. Rev. Mater. Res. 38(1), 143–172 (2008).
[Crossref]

D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. 38(1), 71–99 (2008).
[Crossref]

Appl. Phys. Lett. (1)

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Appl. Surf. Sci. (2)

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Appl. Surf. Sci. 252(10), 3375–3379 (2006).
[Crossref]

A. Satyaprasad, V. Jain, and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci. 253(12), 5462–5466 (2007).
[Crossref]

Chem. Eng. J. (1)

X. Men, X. Shi, B. Ge, Y. Li, X. Zhu, Y. Li, and Z. Zhang, “Novel transparent, liquid-repellent smooth surfaces with mechanical durability,” Chem. Eng. J. 296, 458–465 (2016).
[Crossref]

Colloids Surfaces A Physicochem. Eng. Asp. (3)

P. Zhang, M. T. Tweheyo, and T. Austad, “Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−,” Colloids Surfaces A Physicochem. Eng. Asp. 301(1-3), 199–208 (2007).
[Crossref]

J. Järnström, B. Granqvist, M. Järn, C. M. Tåg, and J. B. Rosenholm, “Alternative methods to evaluate the surface energy components of ink-jet paper,” Colloids Surfaces A Physicochem. Eng. Asp. 294(1-3), 46–55 (2007).
[Crossref]

D. Kwok and A. Neumann, “Contact angle interpretation in terms of solid surface tension,” Colloids Surfaces A Physicochem. Eng. Asp. 161(1), 31–48 (2000).
[Crossref]

Energy Fuels (1)

M. Xu and H. Dehghanpour, “Advances in understanding wettability of gas shales,” Energy Fuels 28(7), 4362–4375 (2014).
[Crossref]

Geofluids (1)

A. Saghafi, H. Javanmard, and K. Pinetown, “Study of coal gas wettability for CO2 storage and CH4 recovery,” Geofluids 14(3), 310–325 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Int. J. Mol. Sci. (1)

A. Hofmann, C. Kaufmann, M. Müller, and T. Hanemann, “Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries,” Int. J. Mol. Sci. 16(9), 20258–20276 (2015).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Z. Zheng, O. Azzaroni, F. Zhou, and W. T. S. Huck, “Topography printing to locally control wettability,” J. Am. Chem. Soc. 128(24), 7730–7731 (2006).
[Crossref] [PubMed]

J. Colloid Interface Sci. (2)

T. D. Blake, “The physics of moving wetting lines,” J. Colloid Interface Sci. 299(1), 1–13 (2006).
[Crossref] [PubMed]

C. C. Dupont-Gillain, B. Nysten, V. Hlady, and P. G. Rouxhet, “Atomic force microscopy and wettability study of oxidized patterns at the surface of polystyrene,” J. Colloid Interface Sci. 220(1), 163–169 (1999).
[Crossref] [PubMed]

J. Colloid Sci. (2)

W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci. 1(6), 513–538 (1946).
[Crossref] [PubMed]

B. R. Ray and F. E. Bartell, “Hysteresis of contact angle of water on paraffin. Effect of surface roughness and of purity of paraffin,” J. Colloid Sci. 8(2), 214–223 (1953).
[Crossref]

J. Exp. Mar. Biol. Ecol. (1)

O. S. Hung, V. Thiyagarajan, and P. Y. Qian, “Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?” J. Exp. Mar. Biol. Ecol. 361(1), 36–41 (2008).
[Crossref]

J. Phys. Chem. (1)

G. L. Mack, “The determination of contact angles from measurements of the dimensions of small bubbles and drops: The spheroidal segment method for acute angles,” J. Phys. Chem. 40(2), 159–167 (1935).
[Crossref]

J. Phys. Condens. Matter (1)

F. Bottiglione and G. Carbone, “An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces,” J. Phys. Condens. Matter 27(1), 015009 (2015).
[Crossref] [PubMed]

Langmuir (5)

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16(17), 7044–7047 (2000).
[Crossref]

H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir 20(14), 5659–5661 (2004).
[Crossref] [PubMed]

B. H. P. Cheong, T. W. Ng, Y. Yu, and O. W. Liew, “Using the meniscus in a capillary for small volume contact angle measurement in biochemical applications,” Langmuir 27(19), 11925–11929 (2011).
[Crossref] [PubMed]

X. Wang and R. A. Weiss, “A facile method for preparing sticky, hydrophobic polymer surfaces,” Langmuir 28(6), 3298–3305 (2012).
[Crossref] [PubMed]

C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4(4), 884–891 (1988).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

M. Chaplin, “Do we underestimate the importance of water in cell biology?” Nat. Rev. Mol. Cell Biol. 7(11), 861–866 (2006).
[Crossref] [PubMed]

Oecologia (1)

M. K. Seely, “Irregular fog as a water source for desert dune beetles,” Oecologia 42(2), 213–227 (1979).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Petrol. Sci. (1)

G. Jiang, Y. Li, and M. Zhang, “Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media,” Petrol. Sci. 10(4), 515–527 (2013).
[Crossref]

Photonic Sensors (1)

M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Photonic Sensors 5(4), 289–297 (2015).
[Crossref]

Powder Technol. (1)

E. Nowak, G. Combes, E. H. Stitt, and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol. 233, 52–64 (2013).
[Crossref]

Rend. Lincei (1)

S. Ioppolo, H. M. Cuppen, and H. Linnartz, “Surface formation routes of interstellar molecules: hydrogenation reactions in simple ices,” Rend. Lincei 22(3), 211–224 (2011).
[Crossref]

Rev. Mod. Phys. (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[Crossref]

Sensors (Basel) (1)

J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware,” Sensors (Basel) 11(12), 7055–7062 (2011).
[Crossref] [PubMed]

Wear (1)

A. Borruto, G. Crivellone, and F. Marani, “Influence of surface wettability on friction and wear tests,” Wear 222(1), 57–65 (1998).
[Crossref]

Other (9)

B. M. Colosimo, F. Mammarella, and S. Petrò, “Quality control of manufactured surfaces,” in Frontiers in Statistical Quality Control 9, H.-J. Lenz, P.-T. Wilrich, and W. Schmid, eds. (Physica-Verlag HD, 2010), pp. 55–70.

W. Wang and A. Gupta, “Investigation of the effect of temperature and pressure on wettability using modified pendant drop method,” in SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 1995), pp. 117–126.
[Crossref]

D. Bonneau, J. W. Silverstone, and M. G. Thompson, Silicon Quantum Photonics, in L. Pavesi and J. D. Lockwood, eds. (Springer Berlin Heidelberg, 2016), pp. 41–82.

B. Arkles, “Hydrophobicity, hydrophilicity and silanes,” Paint Coatings Ind. 114 (2006).

C. S. Wojtysiak, “Radiative cooling surface coatings,” U.S. patent US7503971 B2 (2009).

SkyCool Pty Ltda, “SkyCool,” (2016).

J. Canning, “Smartphone spectrometers and other instrumentation,” SPIE Newsroom, 42–44 (2016).

C. Ladiges, “Aussie innovation helps hunt down gravitational waves,” https://www.csiro.au/en/News/News-releases/2016/Aussie-innovation-helps-hunt-down-gravitational-waves .

CO.FO.ME.GRA., “Quality control in the printing industry,” http://www.cofomegra.it/www.cofomegra.it/documents/QUALITY_CONTROLS.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic for representation of the tangent method for (a) omniphilic and (b) omniphobic surfaces; the spheroidal segment (or height-diameter) method for (c) omniphilic and (d) omniphobic surfaces.

Fig. 2
Fig. 2

Schematic drawings of the top-down method for (a) omniphilic and (b) omniphobic surfaces.

Fig. 3
Fig. 3

Plots of the contact angle θcon for drops on both (a) omniphilic and (b) omniphobic surfaces calculated using the top-down method. Contact angle is plotted as a function of the volume ratio Vr.

Fig. 4
Fig. 4

Median and mean of the contact angle data measured on a test surface for reproducibility and comparison using a range of drop sizes from 1.5 to 8 μL: (a) Three Teflon samples; (b) Other samples from Table 1.

Fig. 5
Fig. 5

Function of position along the chirped nanoparticle coated surface with increasing nanoparticle size from left to right. The density drops as the particle size increases since the thermal evaporation method involves identical amounts of Ag in each region.

Fig. 6
Fig. 6

(a) Mapping of diameter on a black laser printed Aspen paper; (b) Histogram and normal distribution of diameter mapping on a black laser printed Aspen paper; (c) Mapping of height on a black laser printed Aspen paper. (d) Histogram and normal distribution of height mapping on a black laser printed Aspen paper. (e) Mapping of contact angle on a black laser printed Aspen paper. (f) Histogram and normal distribution of contact angle mapping on a black laser printed Aspen paper.

Fig. 7
Fig. 7

Mapping of black powdered ink laser printed aspen paper contaminated with mineral oil UltraGear MB 80W. In detail (a) optical microscope image (lens 40x) of the black ink area, on (b) optical microscope image (lens 40x) of contaminated area with mineral oil.

Fig. 8
Fig. 8

Experimental setup for simultaneous side measurements (tangent and spheroidal (or height diameter) methods) and top measurement (top-down method)

Tables (2)

Tables Icon

Table 1 Comparison of three methods (tangent, spheroidal segment and top-down) for the measurement of contact angle of different surfaces and water drop volumes.

Tables Icon

Table 2 General methodology for the top view method and your variation for practical applications

Metrics