Abstract

We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry

Franklin D. Fuller, Daniel E. Wilcox, and Jennifer P. Ogilvie
Opt. Express 22(1) 1018-1027 (2014)

Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper

Jeffrey A. Myers, Kristin L. M. Lewis, Patrick F. Tekavec, and Jennifer P. Ogilvie
Opt. Express 16(22) 17420-17428 (2008)

Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line

Rocio Borrego-Varillas, Aurelio Oriana, Lucia Ganzer, Anton Trifonov, Ivan Buchvarov, Cristian Manzoni, and Giulio Cerullo
Opt. Express 24(25) 28491-28499 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
    [Crossref] [PubMed]
  2. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
    [Crossref] [PubMed]
  3. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
    [Crossref] [PubMed]
  4. S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
    [Crossref]
  5. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Pres, 2011).
  6. G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
    [Crossref] [PubMed]
  7. A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
    [Crossref] [PubMed]
  8. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
    [Crossref] [PubMed]
  9. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref] [PubMed]
  10. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
    [PubMed]
  11. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
    [Crossref] [PubMed]
  12. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
    [Crossref] [PubMed]
  13. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
    [Crossref] [PubMed]
  14. D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
    [Crossref] [PubMed]
  15. H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
    [Crossref] [PubMed]
  16. V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
    [Crossref] [PubMed]
  17. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
    [Crossref] [PubMed]
  18. A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
    [Crossref] [PubMed]
  19. Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
    [Crossref] [PubMed]
  20. S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
    [Crossref] [PubMed]
  21. G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
    [Crossref] [PubMed]
  22. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
    [Crossref] [PubMed]
  23. J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
    [Crossref] [PubMed]
  24. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
    [Crossref]
  25. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  26. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
    [Crossref]
  27. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
    [Crossref] [PubMed]
  28. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [Crossref] [PubMed]
  29. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  30. R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
    [Crossref] [PubMed]
  31. L. P. Deflores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
    [Crossref] [PubMed]
  32. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
    [Crossref]
  33. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
    [Crossref] [PubMed]
  34. N. Belabas and M. Joffre, “Visible-infrared two-dimensional Fourier-transform spectroscopy,” Opt. Lett. 27(22), 2043–2045 (2002).
    [Crossref] [PubMed]
  35. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30(15), 2010–2012 (2005).
    [Crossref] [PubMed]
  36. A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
    [Crossref] [PubMed]
  37. B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
    [Crossref] [PubMed]
  38. X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
    [Crossref] [PubMed]
  39. N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
    [Crossref] [PubMed]
  40. A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
    [Crossref] [PubMed]
  41. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
    [Crossref] [PubMed]
  42. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
    [Crossref] [PubMed]
  43. K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
    [Crossref] [PubMed]
  44. A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
    [Crossref] [PubMed]
  45. S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25(4), 3259–3267 (2017).
    [Crossref] [PubMed]
  46. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
    [Crossref] [PubMed]
  47. J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22(6), 6719–6733 (2014).
    [Crossref] [PubMed]
  48. J. D. Gaynor, T. L. Courtney, M. Balasubramanian, and M. Khalil, “Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe,” Opt. Lett. 41(12), 2895–2898 (2016).
    [Crossref] [PubMed]
  49. T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
    [Crossref] [PubMed]
  50. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23(16), 1283–1285 (1998).
    [Crossref] [PubMed]
  51. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
    [Crossref] [PubMed]
  52. T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
    [Crossref] [PubMed]
  53. G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
    [Crossref] [PubMed]
  54. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
    [Crossref] [PubMed]
  55. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33(12), 1371–1373 (2008).
    [Crossref] [PubMed]
  56. T. L. Courtney, S. D. Park, R. J. Hill, B. Cho, and D. M. Jonas, “Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer,” Opt. Lett. 39(3), 513–516 (2014).
    [Crossref] [PubMed]
  57. I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
    [Crossref] [PubMed]
  58. E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
    [Crossref] [PubMed]
  59. T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
    [Crossref] [PubMed]
  60. V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
    [Crossref] [PubMed]

2017 (4)

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
[Crossref] [PubMed]

S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25(4), 3259–3267 (2017).
[Crossref] [PubMed]

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
[Crossref] [PubMed]

2016 (9)

A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
[Crossref] [PubMed]

J. D. Gaynor, T. L. Courtney, M. Balasubramanian, and M. Khalil, “Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe,” Opt. Lett. 41(12), 2895–2898 (2016).
[Crossref] [PubMed]

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
[Crossref] [PubMed]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
[Crossref] [PubMed]

J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
[Crossref] [PubMed]

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
[Crossref] [PubMed]

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

2015 (5)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

2014 (11)

T. L. Courtney, S. D. Park, R. J. Hill, B. Cho, and D. M. Jonas, “Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer,” Opt. Lett. 39(3), 513–516 (2014).
[Crossref] [PubMed]

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22(6), 6719–6733 (2014).
[Crossref] [PubMed]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
[Crossref] [PubMed]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

2013 (4)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
[Crossref] [PubMed]

D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
[Crossref] [PubMed]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
[Crossref] [PubMed]

2012 (1)

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

2009 (4)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (5)

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

L. P. Deflores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref] [PubMed]

2005 (2)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30(15), 2010–2012 (2005).
[Crossref] [PubMed]

2004 (2)

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

2002 (1)

1998 (2)

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23(16), 1283–1285 (1998).
[Crossref] [PubMed]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Abramavicius, D.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ahn, T.-K.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Akimov, I. A.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Al Haddad, A.

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Almand-Hunter, A. E.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

Amato, M.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Arrell, C.

Aspuru-Guzik, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Auböck, G.

Augulis, R.

Autry, T. M.

Bakulin, A. A.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
[Crossref] [PubMed]

Balasubramanian, M.

Bayer, M.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Belabas, N.

Berghäuser, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Blair, A. F.

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Borrego-Varillas, R.

Brédas, J.-L.

J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
[Crossref] [PubMed]

Brida, D.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Bristow, A. D.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Brixner, T.

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Buchleitner, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Buchvarov, I.

Butkus, V.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Camargo, F. V. A.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Carlsson, C.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Cassette, E.

E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
[Crossref] [PubMed]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Cerullo, G.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23(16), 1283–1285 (1998).
[Crossref] [PubMed]

Chauvet, A.

Chen, C.-H.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Chen, L. X.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Cheng, Y.-C.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
[Crossref] [PubMed]

Chergui, M.

Cho, B.

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Clafton, S. N.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Clark, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Coker, D. F.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Courtney, T. L.

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Cundiff, S. T.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
[Crossref] [PubMed]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Curmi, P. M. G.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Dai, X.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Davis, J. A.

De Silvestri, S.

De Sio, A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Dean, J. C.

E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
[Crossref] [PubMed]

Deflores, L. P.

Dostál, J.

Draeger, S.

Eklund, E. C.

Engel, G. S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Falke, S. M.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Falvo, C.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

Fleming, G. R.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
[Crossref] [PubMed]

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ganzer, L.

Gaynor, J. D.

Gellen, T. A.

T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
[Crossref] [PubMed]

Gelzinis, A.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ghosh, A.

Ginsberg, N. S.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Griffin, G. B.

D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
[Crossref] [PubMed]

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Hagen, K. R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Hall, C. R.

Hamm, P.

Hao, K.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Harel, E.

Hauer, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hayes, D.

D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
[Crossref] [PubMed]

Heisler, I. A.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Helbing, J.

Hill, R. J.

Huelga, S. F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Ishizaki, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Jimenez, R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Joffre, M.

Jonas, D. M.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

T. L. Courtney, S. D. Park, R. J. Hill, B. Cho, and D. M. Jonas, “Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer,” Opt. Lett. 39(3), 513–516 (2014).
[Crossref] [PubMed]

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
[Crossref] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Jones, A. C.

Karaiskaj, D.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Karczewski, G.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Karki, K. J.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Kavir Dass, C.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Kearns, N. M.

Kee, T. W.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Khalil, M.

Kira, M.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

Klimov, V. I.

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

Knorr, A.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Koch, S. W.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

Koh, C. J.

Lee, H.

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
[Crossref] [PubMed]

Lem, J.

T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
[Crossref] [PubMed]

Lewis, K. L. M.

Lewis, N. H. C.

T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
[Crossref] [PubMed]

Li, H.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

Li, L.-J.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Li, X.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Lienau, C.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Lim, J.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lincoln, C. N.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lonergan, M. C.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref] [PubMed]

Ludwig, A.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

Lundeen, J. S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Ma, X.

Maiuri, M.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Malic, E.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Manzoni, C.

Marcus, A. H.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref] [PubMed]

McCusker, J. K.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Meech, S. R.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Mehlenbacher, R. D.

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Moca, R.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Molinari, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Moody, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Moody, I.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Mootz, M.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

Mukamel, S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

Myers, J. A.

Nardin, G.

Nelson, K. A.

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Nicodemus, R. A.

Nisoli, M.

Ogilvie, J. P.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Ojeda, J.

Olaya-Castro, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
[Crossref] [PubMed]

Oliver, T. A. A.

T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
[Crossref] [PubMed]

Oriana, A.

Ostrander, J. S.

Oudenhoven, T. A.

Palecek, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pan, J.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Park, S. D.

Pensack, R. D.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Peters, W. K.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
[Crossref] [PubMed]

Plenio, M. B.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pullerits, T.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Ratner, M. A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Réhault, J.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Richter, M.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

Roeding, S.

Rozzi, C. A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Rubio, A.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Sargent, E. H.

J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
[Crossref] [PubMed]

Schanz, R.

Scholes, G. D.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
[Crossref] [PubMed]

E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
[Crossref] [PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Seibt, J.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Senlik, S. S.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Serrano, A. L.

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

Silva, C.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
[Crossref] [PubMed]

Silverman, K. L.

Singh, A.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Singh, R.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Sommer, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Song, Y.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Spano, F. C.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Spokoyny, B.

Stagira, S.

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Stiopkin, I. V.

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Suzuki, T.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

Tekavec, P. F.

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
[Crossref] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref] [PubMed]

Tiwari, V.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
[Crossref] [PubMed]

Tokmakoff, A.

Tollerud, J. O.

Tran, K.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Trifonov, A.

Troiani, F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

Turner, D. B.

T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
[Crossref] [PubMed]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Valkunas, L.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

van Grondelle, R.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
[Crossref] [PubMed]

van Mourik, F.

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Vella, E.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
[Crossref] [PubMed]

Volkov, V.

von Berlepsch, H.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Whaley, K. B.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Wiater, M.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Widom, J. R.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Wieck, A. D.

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

Wilcox, D. E.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Wilk, K. E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Wojtowicz, T.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Wong, C. Y.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Xiong, W.

Xu, X.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

Yakovlev, D. R.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Yocum, C. F.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Zanni, M. T.

Zhang, T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Zhu, X.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Zigmantas, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (3)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (1)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work,” J. Phys. Chem. Lett. 7(2), 250–258 (2016).
[Crossref] [PubMed]

Nano Lett. (1)

T. A. Gellen, J. Lem, and D. B. Turner, “Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy,” Nano Lett. 17(5), 2809–2815 (2017).
[Crossref] [PubMed]

Nat. Chem. (2)

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3(10), 763–774 (2011).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Nat. Commun. (5)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
[Crossref] [PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref] [PubMed]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J.-L. Brédas, E. H. Sargent, and G. D. Scholes, “Photovoltaic concepts inspired by coherence effects in photosynthetic systems,” Nat. Mater. 16(1), 35–44 (2016).
[Crossref] [PubMed]

Nature (6)

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref] [PubMed]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543(7647), 647–656 (2017).
[Crossref] [PubMed]

Opt. Express (8)

S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25(4), 3259–3267 (2017).
[Crossref] [PubMed]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
[Crossref] [PubMed]

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
[Crossref] [PubMed]

N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869–7883 (2017).
[Crossref] [PubMed]

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22(6), 6719–6733 (2014).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
[Crossref] [PubMed]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

Opt. Lett. (11)

L. P. Deflores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

N. Belabas and M. Joffre, “Visible-infrared two-dimensional Fourier-transform spectroscopy,” Opt. Lett. 27(22), 2043–2045 (2002).
[Crossref] [PubMed]

V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30(15), 2010–2012 (2005).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33(12), 1371–1373 (2008).
[Crossref] [PubMed]

T. L. Courtney, S. D. Park, R. J. Hill, B. Cho, and D. M. Jonas, “Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer,” Opt. Lett. 39(3), 513–516 (2014).
[Crossref] [PubMed]

J. D. Gaynor, T. L. Courtney, M. Balasubramanian, and M. Khalil, “Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe,” Opt. Lett. 41(12), 2895–2898 (2016).
[Crossref] [PubMed]

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23(16), 1283–1285 (1998).
[Crossref] [PubMed]

A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref] [PubMed]

T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, “Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble,” Phys. Rev. Lett. 117(15), 157402 (2016).
[Crossref] [PubMed]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well,” Phys. Rev. Lett. 112(9), 097401 (2014).
[Crossref] [PubMed]

Phys. Today (1)

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. U.S.A. 110(4), 1203–1208 (2013).
[Crossref] [PubMed]

T. A. A. Oliver, N. H. C. Lewis, and G. R. Fleming, “Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(28), 10061–10066 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009).
[Crossref] [PubMed]

Science (4)

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

D. Hayes, G. B. Griffin, and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science 340(6139), 1431–1434 (2013).
[Crossref] [PubMed]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316(5830), 1462–1465 (2007).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Small (1)

E. Cassette, J. C. Dean, and G. D. Scholes, “Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals,” Small 12(16), 2234–2244 (2016).
[Crossref] [PubMed]

Other (1)

P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Pres, 2011).

Supplementary Material (1)

NameDescription
» Visualization 1       2D spectra as a function of waiting time

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup with two independently tunable NOPAs providing pump and probe pulses. The Mach-Zehnder interferometer creates the first two excitation pulses separated by a variable delay τ. Additional delay line sets the delay T between the two pump pulses and the probe. The cw laser co-propagating along the same path of pump beam with a slight vertical shift provides diagnostic information. The insert shows the pulse sequence at the sample. A pair of quartz wedges and a compensation plate are added to the two arms for phase correction. Two choppers separately modulate the excitation pulses to suppress the scattering noise and the background of the pump-probe signal. A small portion of the two collinear excitation pulses is routed to a fiber spectrometer for real time diagnosis. The transmitted probe light is recorded by a kHz CCD. All optical elements in the interferometer are mounted directly on a same aluminum plate for mechanical stability.
Fig. 2
Fig. 2 (a) The error signals for the interferometer recorded for 10 minutes without (top) and with (bottom) active stabilization engaged. (b) The spectra of the pump and probe pulses and the absorption of nanocrystals for testing the setup. (c) FRAC trace of the pump pulse and a sech2- fit curve show the pulse width is ~6.5 fs. (d) The diagnostic interferogram between the two pump pulses during a continuous scan (without active stabilization) or a step scan (with active stabilization). (e) The interferometer spectra of the two excitation pulses with phase correction. (f) The phase distortion is less than 0.05 rad over the broadband spectral range of the excitation pulses.
Fig. 3
Fig. 3 (a) The sequence of two excitation pulses modulated by two choppers. Absorptive 2D spectra of a nanocrystal sample with intentionally introduced scattering centers acquired by the methods of single modulation (b) and double modulation (c). All the data are captured at a waiting time T = 60 fs. The 2D spectra as a function of T are available in a movie (see Visualization 1). (d) Spectra of pump and probe beams for two-color 2D spectroscopy. (e) Absorptive 2D spectrum of the CdSe/ZnS NC sample.
Fig. 4
Fig. 4 Phase correction. (a) Photon-energy dependent phase errors between two excitation pulses compared with the results calculated with different thickness of quartz. Multiples of 2π in phase difference are removed in the plot. The error in phase estimation is better than 0.05 rad. (b)-(e) 2D spectra generated with different values of phase errors.
Fig. 5
Fig. 5 Separation of the rephasing and non-rephasing signals from experimental data recorded with Δφ0 = 0 and π/2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S( ω τ ,T, ω t )= S Raw ( ω τ ,T, ω t )exp[ iΔ φ BA ( ω τ ) ],
Δ φ BA ( ω τ ,ΔL )= ω τ ( τ 0 n( ω τ )ΔL/c).
n( ω )=n( ω 0 )+(ω ω 0 ) n ω +.
Δ φ BA ( ω τ ,ΔL )= ω τ ( τ 0 n( ω 0 )ΔL/c- n ω ω 0 ΔL/c) n ω ( ω τ ω 0 ) 2 ΔL/c+ n ω ω 0 2 ΔL/c, ω τ τ 0 '+Δ φ 0
τ 0 '= τ 0 n( ω 0 )ΔL/c- n ω ω 0 ΔL/c,
Δ φ 0 = n ω ω 0 2 ΔL/c.
S Δ φ 0 ( τ,T,t ) S R ( τ,T,t ) e iΔ φ 0 + S NR ( τ,T,t ) e iΔ φ 0 .
S R ( ω τ ,T, ω t ) S 0 ( ω τ ,T, ω t )+i S π/2 ( ω τ ,T, ω t ),
S NR ( ω τ ,T, ω t ) S 0 ( ω τ ,T, ω t )i S π/2 ( ω τ ,T, ω t ).

Metrics