Abstract

A demodulation method for interferometric fiber sensors (IFSs) is proposed in this article. The phase variation induced by the measurands can be estimated by calculating the Fourier phase at the intrinsic spatial frequencies of the fiber sensor. Theoretical analysis of the demodulation method is discussed in detail. Numerical simulations are put forward to demonstrate the consistency of the demodulation results under different wavelength sampling interval and noise level, showing a better stability compared with the conventional peak wavelength tracking technique. The proposed method is also experimentally demonstrated by an inline multimode interferometer based on a single-mode fiber (SMF) offset-splicing structure. Experimental results indicate that the phase response of different cladding modes can be analyzed simultaneously. Simultaneous measurement of strain and temperature is realized in our confirmatory experiment by analyzing the phase sensitivities of two selected cladding modes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors

Junfeng Jiang, Tiegen Liu, Yimo Zhang, Lina Liu, Ying Zha, Fan Zhang, Yunxin Wang, and Pin Long
Appl. Opt. 45(3) 528-535 (2006)

Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system

Allan C. Wong, Paul A. Childs, and Gang-Ding Peng
Opt. Lett. 31(1) 23-25 (2006)

Digital demodulation system for low-coherence interferometric sensors based on highly birefringent fibers

Waclaw Urbanczyk, Magdalena S. Nawrocka, and Wojtek J. Bock
Appl. Opt. 40(36) 6618-6625 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. Kreit, R. C. Youngquist, and D. E. N. Davies, “Two-mode fiber interferometer/amplitude modulator,” Appl. Opt. 25(23), 4433–4438 (1986).
    [Crossref] [PubMed]
  2. T. Okamoto and I. Yamaguchi, “Multimode fiber-optic Mach-Zehnder interferometer and its use in temperature measurement,” Appl. Opt. 27(15), 3085–3087 (1988).
    [Crossref] [PubMed]
  3. M. Imai, T. Ohashi, and Y. Ohtsuka, “Fiber-optic Michelson interferometer using an optical power divider,” Opt. Lett. 5(10), 418–420 (1980).
    [Crossref] [PubMed]
  4. H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
    [Crossref]
  5. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref] [PubMed]
  6. L. Cheng, C. Wang, Y. Huang, H. Liang, and B. O. Guan, “Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor,” Opt. Express 24(17), 19600–19606 (2016).
    [Crossref] [PubMed]
  7. X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightwave Technol. 33(15), 3351–3356 (2015).
    [Crossref]
  8. Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
    [Crossref]
  9. J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
    [Crossref] [PubMed]
  10. X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
    [Crossref]
  11. C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
    [Crossref]
  12. J. N. Dash, R. Jha, J. Villatoro, and S. Dass, “Nano-displacement sensor based on photonic crystal fiber modal interferometer,” Opt. Lett. 40(4), 467–470 (2015).
    [Crossref] [PubMed]
  13. J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
    [Crossref]
  14. G. K. B. Costa, P. M. P. Gouvêa, L. M. B. Soares, J. M. B. Pereira, F. Favero, A. M. B. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. S. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
    [Crossref] [PubMed]
  15. T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
    [Crossref]
  16. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
    [Crossref] [PubMed]
  17. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  18. S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
    [Crossref] [PubMed]
  19. K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A curvature sensor based on twisted single-mode–multimode–single-mode hybrid optical fiber structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
    [Crossref]
  20. Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
    [Crossref] [PubMed]
  21. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  22. L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
    [Crossref] [PubMed]
  23. L. Gounaridis, P. Groumas, E. Schreuder, G. Tsekenis, A. Marousis, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “High performance refractive index sensor based on low Q-factor ring resonators and FFT processing of wavelength scanning data,” Opt. Express 25(7), 7483–7495 (2017).
    [Crossref] [PubMed]
  24. B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
    [Crossref]
  25. Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
    [Crossref]
  26. C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
    [Crossref]
  27. X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

2017 (3)

2016 (13)

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

L. Cheng, C. Wang, Y. Huang, H. Liang, and B. O. Guan, “Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor,” Opt. Express 24(17), 19600–19606 (2016).
[Crossref] [PubMed]

Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref] [PubMed]

X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

G. K. B. Costa, P. M. P. Gouvêa, L. M. B. Soares, J. M. B. Pereira, F. Favero, A. M. B. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. S. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
[Crossref] [PubMed]

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

2015 (5)

2014 (1)

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

2011 (1)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

1988 (1)

1986 (1)

1980 (1)

Amezcua Correa, R.

An, M.

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Antonio-Lopez, J. E.

Auguste, J. L.

Avramopoulos, H.

Baptista, J. M.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

Blondy, J. M.

Braga, A. M. B.

Bruno, A. C.

Bu, D.

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

Carvalho, I. C. S.

Chen, X.

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Cheng, L.

Costa, G. K. B.

Dash, J. N.

Dass, S.

Davies, D. E. N.

Ding, H.

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

Dinh, X. Q.

Dong, B.

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

Dong, S.

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

Dong, X.

J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Fan, Y.-X.

Farrell, G.

Favero, F.

Frazao, O.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

Fu, S.

X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Geng, T.

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A curvature sensor based on twisted single-mode–multimode–single-mode hybrid optical fiber structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Gérome, F.

Gounaridis, L.

Gouvêa, P. M. P.

Gouveia, C.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

Groumas, P.

Guan, B. O.

Han, C.

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

He, J.

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Heideman, R.

Hou, M.

Huang, T.

Huang, Y.

Humbert, G.

Imai, M.

Jha, R.

Jiang, S.

Jiao, Y.

Jin, X.

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Jorge, P. A. S.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

Kouloumentas, C.

Kreit, D.

Lewis, E.

Li, J.

Li, X.

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

Li, Z.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Liang, H.

Liao, C.

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Liu, D.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Liu, J.

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Liu, L.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Liu, S.

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Lu, C.

J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

Lu, P.

Lu, Z.

Mao, L.

Marousis, A.

Martinez-Rios, A.

Ni, X.

X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Ohashi, T.

Ohtsuka, Y.

Okamoto, T.

Palffy-Muhoray, P.

Peng, W.

Peng, Y.

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

Pereira, J. M. B.

Qu, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Quan, M.

Ren, J.

Salceda-Delgado, G.

Schreuder, E.

Schülzgen, A.

Shao, X.

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Shum, P. P.

Soares, L. M. B.

Su, J.

J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

Sun, B.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Sun, C.

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Sun, Q.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Sun, Y.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tang, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Tian, J.

Tian, K.

Tsekenis, G.

Van Newkirk, A.

Villatoro, J.

Wang, C.

Wang, D.

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Wang, P.

Wang, S.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
[Crossref] [PubMed]

Wang, Y.

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Wu, Z.

Xia, F.

Xin, Y.

Yamaguchi, I.

Yang, K.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Yang, W.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A curvature sensor based on twisted single-mode–multimode–single-mode hybrid optical fiber structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Yao, Y.

Yin, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Youngquist, R. C.

Yu, C.

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

Yu, X.

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

Yuan, L.

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Zhang, H.

Zhang, J.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

Zhang, N.

Zhang, X.

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhao, Z.

X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Zhu, F.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C. Han, H. Ding, X. Li, and S. Dong, “Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer,” Appl. Phys. Lett. 104(18), 181906 (2014).
[Crossref]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

IEEE Photonics J. (3)

T. Geng, J. He, W. Yang, X. Chen, M. An, C. Sun, X. Jin, and L. Yuan, “Modal interferometer using three-core fiber for simultaneous measurement strain and temperature,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

X. Ni, S. Fu, and Z. Zhao, “Thin-fiber-based Fabry–Pérot cavity for monitoring microfluidic refractive index,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

X. Yu, D. Bu, X. Chen, J. Zhang, and S. Liu, “Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis,” IEEE Photonics J. 8(2), 1–10 (2016).

IEEE Photonics Technol. Lett. (4)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice,” IEEE Photonics Technol. Lett. 23(12), 804–806 (2011).
[Crossref]

B. Dong, Y. Peng, Y. Wang, and C. Yu, “Mode division multiplexing in a fiber modal interferometer for dual-parameters measurement,” IEEE Photonics Technol. Lett. 28(2), 143–146 (2016).
[Crossref]

J. Su, X. Dong, and C. Lu, “Property of bent few-mode fiber and its application in displacement sensor,” IEEE Photonics Technol. Lett. 28(13), 1387–1390 (2016).
[Crossref]

H. Liu, D. Wang, J. Liu, and S. Liu, “Range tunable optical fiber micro-Fabry–Pérot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

IEEE Sens. J. (1)

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution using twisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (7)

S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
[Crossref] [PubMed]

G. K. B. Costa, P. M. P. Gouvêa, L. M. B. Soares, J. M. B. Pereira, F. Favero, A. M. B. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. S. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
[Crossref] [PubMed]

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

L. Cheng, C. Wang, Y. Huang, H. Liang, and B. O. Guan, “Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor,” Opt. Express 24(17), 19600–19606 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, G. Tsekenis, A. Marousis, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “High performance refractive index sensor based on low Q-factor ring resonators and FFT processing of wavelength scanning data,” Opt. Express 25(7), 7483–7495 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. Rep. (1)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Mechanism of measurement error of wavelength demodulation caused by (a) sampling interval and (b) spectral noise.
Fig. 2
Fig. 2 Fourier spectra with OPD variation values of 0-200nm with 0.01 noise coefficient.
Fig. 3
Fig. 3 Simulated spectra with OPD variation ranging from 0 to 200nm under noise coefficient of (a) 0; (c) 0.005 and (e) 0.01 and demodulated results using wavelength searching and Fourier phase under noise level of (b) 0; (d) 0.005 and (f) 0.01.
Fig. 4
Fig. 4 Simulated spectra with OPD variation ranging from 0 to 200nm under wavelength sampling interval of (a) 0.05nm; (c) 0.2nm and (e) 0.4nm and demodulated results using wavelength searching and Fourier phase under wavelength sampling interval of (b) 0.05nm; (d) 0.2nm and (f) 0.4nm.
Fig. 5
Fig. 5 Results error of the two demodulation methods under different (a) noise level and (b) sampling interval.
Fig. 6
Fig. 6 Experimental setup to test the sensor under temperature and strain.
Fig. 7
Fig. 7 (a) Optical spectra and (b) FFT spectra under different temperature.
Fig. 8
Fig. 8 Phase sensitivities of temperature of the two selected cladding modes.
Fig. 9
Fig. 9 Wavelength demodulation results in temperature sensing.
Fig. 10
Fig. 10 (a) Optical spectra and (b) FFT spectra and under different strain.
Fig. 11
Fig. 11 Phase stability of the two selected cladding modes.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

T(λ)=A+Bcos( 2π λ d)A+Bcos(βλ)
T'(λ)=A+Bcos[ 2π λ (dΔd) ]=T(λ+Δλ)
Δλ= λΔd dΔd λ 0 Δd dΔd
ΔFSR= λ 0 2 ( 1 dΔd 1 d ) Δd d FSR<<FSR
T'( λ j )=T( λ j +Δλ)=A+Bcos(β λ j +Δφ)
λ j = λ 1 +(j1)Δ λ 0 ,j=1,2......N
f k = β 2π =(k1)Δf= k1 NΔ λ 0
F'( f k )= j=1 N T'( λ j ) e 2πi N (j1)(k1) = j=1 N T'( λ j ) cos[ 2π N (j1)(k1)]i j=1 N T'( λ j ) sin[ 2π N (j1)(k1)]
T'( λ j )=A+Bcos[2π f k λ j +Δφ]=A+Bcos[ 2π N (j1)(k1)+ θ C +Δφ]
θ C =2π(k1) λ 1 Δf
Re[F'( f k )]= j=1 N Acos( φ j ) + j=1 N Bcos( φ j + θ C +Δφ) cos( φ j )= BN 2 cos( θ C +Δφ)
Im[F'( f k )]= j=1 N Asin( φ j ) j=1 N Bcos( φ j + θ C +Δφ) sin( φ j )= BN 2 sin( θ C +Δφ)
φ j = 2π N (j1)(k1),j=1,2......N
cosF'( f k )= Re[F'( f k )] Am[F'( f k )] =cos( θ C +Δφ),sinF'( f k )= Im[F'( f k )] Am[F'( f k )] =sin( θ C +Δφ)
Am[F'( f k )]= Re [F'( f k )] 2 +Im [F'( f k )] 2
cosF( f k )=cos( θ C ),sinF( f k )=sin( θ C )
ΔF'( f k )=Δφ= tan 1 { Im[F'( f k )] Re[F'( f k )] Im[F( f k )] Re[F( f k )] 1+ Im[F( f k )] Re[F( f k )] Im[F'( f k )] Re[F'( f k )] }
T( λ j )=A+Bcos[ 2π λ j (dmΔd) ]+nrand( λ j )
δRe= j=1 N nrand( λ j ) cos[ 2π λ j (j1)(k1)]0
δIm= j=1 N nrand( λ j ) sin[ 2π λ j (j1)(k1)]0
ME= x M x T x T
T( λ j )=A+ n B n cos( β n λ j +Δ φ n )
f n = β n / 2π
[ Δ ϕ 1 Δ ϕ 2 ]=[ K ε1 K T1 K ε2 K T2 ][ Δε ΔT ]=[ 0.004°/ με 1.22°/ °C 0.019°/ με 1.47°/ °C ][ Δε ΔT ]
[ ΔT Δε ]= 1 | K ε1 K T2 K ε2 K T1 | [ K ε2 K ε1 K T2 K T1 ][ Δ ϕ 1 Δ ϕ 2 ]

Metrics