Abstract

Developing micro/nanoscale wire (MNW) lasers with single-mode operation is critical for realizing their practical applications, however, most reported MNW lasers operate in multi-modes, because lacking of mode selection mechanisms. In this work, a simple and direct way to realize stable, single-mode MNW laser without complicated micro/nano-manipulation was demonstrated. We have found and proved that the position of the active region plays a key role in determining the lasing mode of MNW lasers, which can be used to realize single-mode lasing in MNWs. We propose self-selection mechanism of Fabry-Pérot MNW cavity for single-mode lasing due to location-dependent field distribution in MNWs, which is characterized by suppressing the multiple longitudinal mode oscillation of the MNW laser. GaN MNW lasers with different lengths and diameters have been fabricated, verifying the self-selection mechanism of the cavity experimentally. Moreover, we demonstrate the single-mode, room temperature optically pumped MNW laser with an extremely low threshold (~40 kW/cm2) in condition of appropriate cavity length, opening an opportunity to realize stable single-mode, low-threshold MNW laser for easy integration in constructing micro/nanoscale photonic and optoelectronic circuits and devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable single-mode lasing in a single semiconductor microrod

Yue Yang, Tiantian Wei, Rui Zhu, Hua Zong, Junfeng Lu, Junchao Li, Hui Liao, Guo Yu, Caofeng Pan, and Xiaodong Hu
Opt. Express 26(23) 30021-30029 (2018)

Reduction of lasing threshold by protecting gas and the structure dependent visual lasing mode of various CdS microstructures

Ya Li, Shuai Guo, Fangyin Zhao, An Li, Ke Chai, Liang Liang, and Ruibin Liu
Opt. Express 24(23) 26857-26866 (2016)

Semiconductor nanowire lasers

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong
Adv. Opt. Photon. 5(3) 216-273 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  2. B. Janjua, H. D. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. H. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25(2), 1381–1390 (2017).
    [Crossref] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  4. I. Giuntoni, L. Geelhaar, J. Bruns, and H. Riechert, “Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform,” Opt. Express 24(16), 18417–18427 (2016).
    [Crossref] [PubMed]
  5. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
    [Crossref]
  6. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
    [Crossref] [PubMed]
  7. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
    [Crossref]
  8. S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
    [Crossref]
  9. A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
    [Crossref] [PubMed]
  10. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chapter 14.
  11. Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
    [Crossref] [PubMed]
  12. L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
    [Crossref]
  13. J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
    [Crossref]
  14. A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
    [Crossref] [PubMed]
  15. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
    [Crossref] [PubMed]
  16. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
    [Crossref] [PubMed]
  17. Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
    [Crossref]
  18. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
    [Crossref]
  19. X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
    [Crossref]
  20. M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
    [Crossref]
  21. P. M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes Vs Fabry-Perot modes,” Opt. Express 20(17), 18707–18716 (2012).
    [Crossref] [PubMed]
  22. X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
    [Crossref] [PubMed]
  23. C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
    [Crossref]
  24. L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
    [Crossref] [PubMed]
  25. C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
    [Crossref] [PubMed]
  26. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [Crossref]
  27. F. S. Chen, “Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
    [Crossref]

2017 (1)

2016 (1)

2015 (6)

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

2014 (1)

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

2013 (3)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
[Crossref]

2012 (2)

2011 (3)

C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
[Crossref] [PubMed]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

2009 (2)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

2006 (1)

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

2003 (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

1998 (1)

M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
[Crossref]

1996 (1)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

1969 (1)

F. S. Chen, “Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

Agarwal, R.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

Albadri, A. M.

Alhamoud, A. A.

Alloing, B.

Alyamani, A. Y.

Andrews, S. C.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Anjum, D. H.

Arafin, S.

S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
[Crossref]

Atwater, H. A.

C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
[Crossref] [PubMed]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Beraudo, E.

Brener, I.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
[Crossref] [PubMed]

Bruns, J.

Buyanova, I. A.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Campione, S.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Chen, F. S.

F. S. Chen, “Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

Chen, L.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

Chen, W. M. M.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Chow, W. W.

Coulon, P. M.

Couteau, C.

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

Cui, J.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

de Abajo, F. J. G.

C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
[Crossref] [PubMed]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Ding, Q.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Djurisic, A. B.

M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
[Crossref]

Dobrovolsky, A.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

El-Desouki, M. M.

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Fu, A.

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Fu, Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Gao, H.

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Geelhaar, L.

Giuntoni, I.

Gong, Z.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Gu, F.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Gustafsson, M. V.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Hofmann, C. E.

C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
[Crossref] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Hugues, M.

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Janjua, B.

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Jin, S.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Kuang, Y.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Larrue, A.

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

Leroux, M.

Lester, L. F.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
[Crossref] [PubMed]

Leung, M. M. Y.

M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
[Crossref]

Li, E. H.

M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
[Crossref]

Li, J.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Li, J. B.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Li, Q.

Li, Q. M.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Li, X. H.

Liu, S.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Liu, X.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Liu, X. H.

S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
[Crossref]

Liu, X. W.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Luk, T. S.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
[Crossref] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Martinez, J. A.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Meng, C.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

Meng, F.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Mi, Z. T.

S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
[Crossref]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Ng, T. K.

Ooi, B. S.

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Petrov, P.

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Piccione, B.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

Priante, D.

Ren, X.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Riechert, H.

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Soci, C.

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Spector, A. A.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

Stehr, J. E.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Sukrittanon, S.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Sun, H. D.

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Swartzentruber, B. S.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Tong, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Tong, L. M.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

Towe, E.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

Trinh, M. T.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Tu, C. W.

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

van Vugt, L. K.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

Wang, D. L.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Wang, G. T.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
[Crossref] [PubMed]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Wang, S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wilhelm, C.

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

Wright, J. B.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
[Crossref] [PubMed]

Wu, F.

Wu, X.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Wu, X. Q.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

Wu, Y.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wu, Y. P.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xiao, Y.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Xu, H. W.

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Xu, P. F.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yan, X.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Yang, P.

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, Q.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Yang, W. S.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Yang, Z. Y.

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Yin, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yu, H.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Zhang, B.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

Zhang, X.

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Zhao, C.

Zhu, H.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Zhu, X. Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Zuniga-Perez, J.

Adv. Mater. (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Appl. Phys. Lett. (3)

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

J. B. Wright, S. Campione, S. Liu, J. A. Martinez, H. W. Xu, T. S. Luk, Q. M. Li, G. T. Wang, B. S. Swartzentruber, L. F. Lester, and I. Brener, “Distributed feedback gallium nitride nanowire lasers,” Appl. Phys. Lett. 104(4), 041107 (2014).
[Crossref]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99(2), 023109 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

J. Appl. Phys. (3)

F. S. Chen, “Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

M. M. Y. Leung, A. B. Djuriŝić, and E. H. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84(11), 6312–6317 (1998).
[Crossref]

J. Nanophotonics (1)

S. Arafin, X. H. Liu, and Z. T. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophotonics 7(1), 074599 (2013).
[Crossref]

Nano Energy (1)

X. W. Liu, P. F. Xu, Y. P. Wu, Z. Y. Yang, C. Meng, W. S. Yang, J. B. Li, D. L. Wang, X. Liu, and Q. Yang, “Control, optimization and measurement of parameters of semiconductor nanowires lasers,” Nano Energy 14, 340–354 (2015).
[Crossref]

Nano Lett. (4)

A. Fu, H. Gao, P. Petrov, and P. Yang, “Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides,” Nano Lett. 15(10), 6909–6913 (2015).
[Crossref] [PubMed]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[Crossref] [PubMed]

C. E. Hofmann, F. J. G. de Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Lett. 11(2), 372–376 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

C. Couteau, A. Larrue, C. Wilhelm, and C. Soci, “Nanowire lasers,” Nanophotonics 4(1), 90–107 (2015).
[Crossref]

Nanoscale (1)

X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, “Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures,” Nanoscale 7(3), 1110–1115 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Opt. Express (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Small (1)

A. Dobrovolsky, J. E. Stehr, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. M. Chen, and I. A. Buyanova, “Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires,” Small 11(47), 6331–6337 (2015).
[Crossref] [PubMed]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chapter 14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) PL spectrum of a GaN MNW. (b) The computational domain used for calculating the spontaneous emission of the dipole sources by 3D FDTD solutions tools.
Fig. 2
Fig. 2 Normalized guided spontaneous emission rate of dipole sources in a 60-μm-long, 2-μm-diameter GaN MNW at wavelengths of 367.7 nm, 366 nm and 364.3 nm.
Fig. 3
Fig. 3 (a) The SEM image of a single GaN MNW. (b) The SEM of a GaN MNW transferred to a sapphire substrate (c) The TEM micrograph of an individual GaN MNW. (d) Spontaneous emission of a 45-μm-long, 1.8-μm-diameter GaN MNW below lasing threshold at room temperature under a power density of 452 kW/cm2. Arrows highlight three adjacent Fabry-Pérot peaks. Inset: Mode spacing vs inverse MNW length.
Fig. 4
Fig. 4 The laser spectrum of a single 61-μm-long, 2.15-μm-diameter GaN MNW pumped well above the lasing threshold at room temperature under a power density of 8120 kW/cm2: (a) when the excitation light spot is placed at a distance of 27.8 μm from the left end face of the MNW. The inset is the corresponding CCD image of the MNW; and (b) when the center position of the excitation light spot is placed at a distance of 39.7 μm from the left end face. The inset is the corresponding CCD image of the MNW. Output spectra of the MNW pumped well above the lasing threshold at room temperature under a power density of (c) 6787 kW/cm2 and (d) 5082 kW/cm2. The upper red line represents the output spectra with the same excitation position as (a) indicates; the lower blue line represents the output spectra with the same excitation position as (b) indicates.
Fig. 5
Fig. 5 Output spectra of the MNW show clean single-wavelength lasing at different excitation intensities. The inset is output intensity vs pump power density measured for lasing peak at 375.6 nm.
Fig. 6
Fig. 6 (a) The laser spectrum of a single 72-μm-long, 2-μm-diameter GaN MNW pumped well above the lasing threshold at room temperature under a power density of 8120 kW/cm2. The dashed-line arrows indicate the corresponding CCD images of the MNW with different excitation positions. (b) Output spectra of the MNW show clean single-wavelength lasing at different excitation intensities. (c) Power dependence for the peak wavelength (367.3 nm) of the 72-μm-long, 2-μm-diameter GaN MNW under single/multi-mode lasing.
Fig. 7
Fig. 7 Laser spectra of (a) a 72-μm-long, 2-μm-diameter MNW, (b) a 59.6-μm-long, 1.8-μm-diameter MNW, (c) a 45.8-μm-long, 1.45-μm-diameter MNW, (d) a 34.2-μm-long, 3.2-μm-diameter MNW lasers obtained well above the threshold at room temperature under a power density of (a) 8120 kW/cm2 (b) 8120 kW/cm2 (c) 5082 kW/cm2 (d) 3034 kW/cm2. The insets are output intensity vs pump power density measured for each lasing peak.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| E c (λ) | 2 = (1 R 2 )[1+ R 1 +2 R 2 cos( 2ω z 1 c )] 1+ R 1 R 2 2 R 1 R 2 cos( 2ωL c ) | E n (λ) | 2 .
E= 1 2 × hc L × M n .
ρ= ω 2 n 3 π 2 c 3 + 1 2 π 2 ω Im{ E scat D } .

Metrics