Abstract

Mask aligner lithography is a well-established back-end fabrication process in microlithography. Within the last few years, resolution enhancement techniques have been transferred and adapted from projection lithography to further develop mask aligner lithography, especially concerning achievable resolution. Nonetheless, current technology using a mercury vapor lamp as a light source has reached its limits, e.g. for high-resolution pattering. Within this paper, we present the extension of the existing mask aligner illumination system by replacing the mercury vapor lamp with a solid-state laser. Full-field mask aligner lithography is guaranteed by a rotating diffuser expanding the laser beam and minimizing undesired speckle effects. An additional integrated galvanometer scanner allows a flexible choice of arbitrary angular spectrum distributions of the photomask illumination. We show versatile results like simple binary patterns of squares and triangles, as well as a more complex lateral shape like a blazed grating.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

31 August 2017: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect

Lorenz Stuerzebecher, Torsten Harzendorf, Uwe Vogler, Uwe D. Zeitner, and Reinhard Voelkel
Opt. Express 18(19) 19485-19494 (2010)

Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm

Raoul Kirner, Andreas Vetter, Dmitrijs Opalevs, Christian Gilfert, Matthias Scholz, Patrick Leisching, Toralf Scharf, Wilfried Noell, Carsten Rockstuhl, and Reinhard Voelkel
Opt. Express 26(2) 730-743 (2018)

Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner
Opt. Express 22(13) 16310-16321 (2014)

References

  • View by:
  • |
  • |
  • |

  1. SUSS Microtec Datasheet. MJB4 Manual Mask Aligner 04/2013.
  2. B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
    [Crossref]
  3. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
    [Crossref] [PubMed]
  4. K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
    [Crossref]
  5. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18(19), 19485–19494 (2010).
    [Crossref] [PubMed]
  6. T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
    [Crossref]
  7. L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
    [Crossref]
  8. Y. Bourgin, T. Käsebier, and U. D. Zeitner, “250 nm period grating transferred by proximity i-line mask-aligner lithography,” Opt. Lett. 39(6), 1665–1668 (2014).
    [Crossref] [PubMed]
  9. S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
    [Crossref]
  10. C. Mack, Fundamental Principles of Optical Lithography (John Wiley and Sons, 2007), Chap. 1.3.4.
  11. P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55-µm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photonics Technol. Lett. 7(7), 783–785 (1995).
    [Crossref]
  12. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401 (1836).
  13. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
    [Crossref]
  14. T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
    [Crossref] [PubMed]
  15. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19(20), 19384–19398 (2011).
    [Crossref] [PubMed]
  16. R. F. Pease and S. Y. Chou, “Lithography and Other Patterning Techniques for Future Electronics,” Proc. IEEE 96(2), 248–270 (2008).
    [Crossref]
  17. C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
    [Crossref]
  18. M. B. Stern, “Pattern transfer for diffractive and refractive microoptics,” Microelectron. Eng. 34(3-4), 299–319 (1997).
    [Crossref]
  19. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
    [Crossref]
  20. M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
    [Crossref]
  21. T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982).
    [Crossref] [PubMed]
  22. R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
    [Crossref]
  23. M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
    [Crossref] [PubMed]
  24. T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
    [Crossref]
  25. BAE Systems PLC, Variable-efficiency diffraction grating. European Patent EP 2752691 A1, (2014).
  26. T. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol. 4(1), 25–46 (2015).
  27. L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
    [Crossref]
  28. E. G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16(10), 2711–2721 (1977).
    [Crossref] [PubMed]
  29. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffraction elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
    [Crossref]
  30. M. J. Madou, Fundamentals of Microfabrication. The Science of Miniaturization (CRC Press LLC, 2002), p.77ff.
  31. C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
    [Crossref]
  32. C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
    [Crossref]
  33. P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
    [Crossref]

2015 (3)

T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

T. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol. 4(1), 25–46 (2015).

2014 (3)

2012 (1)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

2011 (2)

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19(20), 19384–19398 (2011).
[Crossref] [PubMed]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

2010 (5)

2008 (4)

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

R. F. Pease and S. Y. Chou, “Lithography and Other Patterning Techniques for Future Electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

2006 (1)

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

2004 (1)

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

2000 (1)

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

1999 (1)

1997 (1)

M. B. Stern, “Pattern transfer for diffractive and refractive microoptics,” Microelectron. Eng. 34(3-4), 299–319 (1997).
[Crossref]

1995 (3)

M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
[Crossref]

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55-µm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photonics Technol. Lett. 7(7), 783–785 (1995).
[Crossref]

C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
[Crossref]

1982 (1)

1977 (1)

1836 (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401 (1836).

Akilian, M.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Astilean, S.

Benkenstein, T.

Bich, A.

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

Bourgin, Y.

Braeuer, A.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

Bramati, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

Brown, D. K.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Cambril, E.

Chang, C.-H.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Chavel, P.

Chou, S. Y.

R. F. Pease and S. Y. Chou, “Lithography and Other Patterning Techniques for Future Electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Christophersen, M.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

Cullmann, E.

Dannberg, P.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

Deng, Q.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Dong, X.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Du, C.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Dunkel, J.

Dunn, M.

C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
[Crossref]

Ehbets, P.

M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
[Crossref]

Erdmann, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Flanagan, K. A.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Fuchs, F.

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
[Crossref]

Fuehner, T.

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Fujita, T.

Glaser, T.

T. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol. 4(1), 25–46 (2015).

Goray, L. I.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Harzendorf, T.

Heilmann, R. K.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Hennemeyer, M.

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

Herzig, H. P.

M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
[Crossref]

Hornung, M.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

Hudek, P.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Jensen, P. I.

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55-µm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photonics Technol. Lett. 7(7), 783–785 (1995).
[Crossref]

Jia, N.

Käsebier, T.

Kjornrattanawanich, B.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Koyama, J.

Kuittinen, M.

M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
[Crossref]

Lalanne, P.

Lam, E. Y.

Laming, J. M.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Lapsa, A.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Launois, H.

Li, M.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Loewen, E. G.

Luo, X.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Mann, G.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

Martin, K. P.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Matthes, A.

Maystre, D.

Meindl, J. D.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Meliorisz, B.

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Meyer, S.

L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
[Crossref]

Michaelis, D.

Montoya, J. C.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Motzek, K.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

Murali, R.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Nevière, M.

Nishihara, H.

Oliva, M.

Olson, J.

C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
[Crossref]

Palmer, C.

C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
[Crossref]

Partel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Pease, R. F.

R. F. Pease and S. Y. Chou, “Lithography and Other Patterning Techniques for Future Electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Pernet, P.

Phlips, B. F.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

Rasmussen, A. P.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Schattenburg, M. L.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Schnattinger, T.

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

Seely, J. F.

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

Shi, L.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Stern, M. B.

M. B. Stern, “Pattern transfer for diffractive and refractive microoptics,” Microelectron. Eng. 34(3-4), 299–319 (1997).
[Crossref]

Stuerzebecher, L.

T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
[Crossref]

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
[Crossref]

L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18(19), 19485–19494 (2010).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

Sudbo, A.

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55-µm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photonics Technol. Lett. 7(7), 783–785 (1995).
[Crossref]

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401 (1836).

Tünnermann, A.

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

Voelkel, R.

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18(19), 19485–19494 (2010).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
[Crossref]

Vogler, U.

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
[Crossref]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18(19), 19485–19494 (2010).
[Crossref] [PubMed]

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

Weible, K. J.

Weichelt, T.

T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
[Crossref]

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

Zeitner, U. D.

T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
[Crossref]

Y. Bourgin, T. Käsebier, and U. D. Zeitner, “250 nm period grating transferred by proximity i-line mask-aligner lithography,” Opt. Lett. 39(6), 1665–1668 (2014).
[Crossref] [PubMed]

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, “Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks,” Opt. Express 22(13), 16310–16321 (2014).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
[Crossref]

L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18(19), 19485–19494 (2010).
[Crossref] [PubMed]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[Crossref] [PubMed]

Zhang, Y.

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

Zoberbier, R.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
[Crossref] [PubMed]

Zoppel, S.

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

Adv. Opt. Technol. (1)

T. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol. 4(1), 25–46 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55-µm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photonics Technol. Lett. 7(7), 783–785 (1995).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

T. Weichelt, L. Stuerzebecher, and U. D. Zeitner, “Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography,” J. Micro. Nanolithogr. MEMS MOEMS 14(3), 034501 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

C. Du, X. Dong, Q. Deng, L. Shi, X. Luo, and Y. Zhang, “Micro-optical devices formed by a dynamic photolithographic approach,” J. Opt. A, Pure Appl. Opt. 10(6), 064007 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (2)

C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22(6), 3260 (2004).
[Crossref]

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for grey scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Microelectron. Eng. (5)

L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tünnermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng. 132, 120–134 (2015).
[Crossref]

M. B. Stern, “Pattern transfer for diffractive and refractive microoptics,” Microelectron. Eng. 34(3-4), 299–319 (1997).
[Crossref]

B. Meliorisz, S. Partel, T. Schnattinger, T. Fuehner, A. Erdmann, and P. Hudek, “Investigation of high-resolution contact printing,” Microelectron. Eng. 85(5-6), 744–748 (2008).
[Crossref]

K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, and B. Meliorisz, “Computational algorithms for optimizing mask layouts in proximity printing,” Microelectron. Eng. 88(8), 2066–2069 (2011).
[Crossref]

S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, and R. Voelkel, “Contact and proximity printing using 193 nm Excimer laser in Mask Aligner,” Microelectron. Eng. 87(5-8), 936–939 (2010).
[Crossref]

Opt. Commun. (1)

M. Kuittinen, H. P. Herzig, and P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120(5-6), 230–234 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401 (1836).

Proc. IEEE (1)

R. F. Pease and S. Y. Chou, “Lithography and Other Patterning Techniques for Future Electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Proc. SPIE (5)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography,” Proc. SPIE 8326, 83261Y (2012).
[Crossref]

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
[Crossref]

C. Palmer, J. Olson, and M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist grating,” Proc. SPIE 2622, 112–121 (1995).
[Crossref]

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137–145 (2000).
[Crossref]

L. Stuerzebecher, F. Fuchs, T. Harzendorf, S. Meyer, and U. D. Zeitner, “Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography,” Proc. SPIE 8974, 897415 (2014).
[Crossref]

Other (4)

M. J. Madou, Fundamentals of Microfabrication. The Science of Miniaturization (CRC Press LLC, 2002), p.77ff.

BAE Systems PLC, Variable-efficiency diffraction grating. European Patent EP 2752691 A1, (2014).

SUSS Microtec Datasheet. MJB4 Manual Mask Aligner 04/2013.

C. Mack, Fundamental Principles of Optical Lithography (John Wiley and Sons, 2007), Chap. 1.3.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic overview of the optical elements used if the solid-state laser is utilized as an illumination source, compared to the conventional set-up in (b) [3].
Fig. 2
Fig. 2 Schematic design of the rotating diffuser. It consists of approximately 8,000 small holograms. Its Fourier transform generates a circular intensity distribution (d = 220 mm).The upper right scanning-electron-microscope picture shows a detail of the fabricated diffuser.
Fig. 3
Fig. 3 These images show the relation between the definition of the angular spectrum illuminating the photomask (left) and the scanner-generated pattern, illuminating the diffuser after passing the collimation lens (right).
Fig. 4
Fig. 4 Photographs taken by the scanning-electron-microscope (SEM) showing the achievements applying different angular spectra determined with the scanning motion of the galvano scanner
Fig. 5
Fig. 5 Comparison of resulting photoresist patterns generated (a) without OPC and (b) with OPC features.
Fig. 6
Fig. 6 Left: SEM picture of the continuous profile of a blazed grating in AZ4562 resist. Right: The scanned pattern defines the angular distribution illuminating the photomask.
Fig. 7
Fig. 7 Continuous blazed grating profile in AZ ECI3027 resist generated by means of a rigorously designed phase mask and laser illumination integrated in a mask aligner.

Metrics