Abstract

Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator

David Shrekenhamer, Claire M. Watts, and Willie J. Padilla
Opt. Express 21(10) 12507-12518 (2013)

Design of reconfigurable metallic slits for terahertz beam modulation

Christopher W. Berry, Jeremy Moore, and Mona Jarrahi
Opt. Express 19(2) 1236-1245 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
    [Crossref]
  3. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
    [Crossref]
  4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [Crossref]
  5. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
    [Crossref]
  6. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
    [Crossref]
  7. J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.
  8. R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
    [Crossref]
  9. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
    [Crossref] [PubMed]
  10. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507 (2013).
    [Crossref] [PubMed]
  11. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
    [Crossref]
  12. H. Shen, L. Gan, N. Newman, Y. Dong, C. Li, Y. Huang, and Y. C. Shen, “Spinning disk for compressive imaging,” Opt. Lett. 37, 46 (2012).
    [Crossref] [PubMed]
  13. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref] [PubMed]
  14. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391 (2012).
    [Crossref] [PubMed]
  15. A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
    [Crossref]
  16. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  17. B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324 (2013).
    [Crossref] [PubMed]
  18. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
    [Crossref]
  19. D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
    [Crossref]
  20. N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
    [Crossref]
  21. Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, “Terahertz beam steering and variable focusing using programmable diffraction gratings,” Opt. Express 21, 2347 (2013).
    [Crossref] [PubMed]
  22. C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
    [Crossref]
  23. M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
    [Crossref]
  24. R. Casini and P. G. Nelson, “On the intensity distribution function of blazed reflective diffraction gratings,” J. Opt. Soc. Am. A 31, 2179 (2014).
    [Crossref]

2017 (1)

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

2016 (2)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

2014 (4)

R. Casini and P. G. Nelson, “On the intensity distribution function of blazed reflective diffraction gratings,” J. Opt. Soc. Am. A 31, 2179 (2014).
[Crossref]

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

2013 (5)

2012 (2)

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
[Crossref]

2009 (2)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Altmann, K.

Aria, A. I.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Bauer, M.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Beere, H. E.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Benz, A.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Boppel, S.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Braeuninger-Weimer, P.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Brener, I.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Busch, S.

Canonica, M.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Casini, R.

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

Chen, H.-T.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Cheng, L. J.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Cich, M. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Clerc, P.-A.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
[Crossref]

de Rooij, N.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Degl’Innocenti, R.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Dong, Y.

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Fay, P.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Gan, L.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Gibson, G. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Hendry, E.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Hillmer, H.

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Hofmann, S.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Hornett, S. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Huang, Y.

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

Jansen, C.

Jena, D.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
[Crossref]

Jiang, Z.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Kamboj, V. S.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Kannegulla, A.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Karl, N.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Kindness, S. J.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Koch, M.

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, “Terahertz beam steering and variable focusing using programmable diffraction gratings,” Opt. Express 21, 2347 (2013).
[Crossref] [PubMed]

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391 (2012).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
[Crossref]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Krishna, S.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
[Crossref]

Krozer, V.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Kuleshov, E. A.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Lanzoni, P.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Li, C.

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

Lisauskas, A.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Liu, L.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324 (2013).
[Crossref] [PubMed]

Mendis, R.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Mittleman, D. M.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Monnai, Y.

Montoya, J.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
[Crossref]

Nadell, C. C.

Nakanishi, K.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Nazarov, M. M.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Nelson, P. G.

Newman, N.

Noell, W.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Padgett, M. J.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Palenskis, V.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Protasenko, V.

Rafique, S.

Rahman, S. M.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Reichel, K.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Reno, J. L.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Ritchie, D. A.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Roskos, H. G.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Rutz, F.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

Scheller, M.

Scherger, B.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Sensale-Rodriguez, B.

Shams, M. I. B.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Shen, H.

Shen, Y. C.

Shinoda, H.

Shkurinov, A. P.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

Stantchev, R. I.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

Taylor, A. J.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tuchin, V. V.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Waldis, S.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Watts, C. M.

Wei, B.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Xiao, L.

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Xing, H. G.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324 (2013).
[Crossref] [PubMed]

Yan, R.

Zamkotsian, F.

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Zdanevicius, J.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Zhu, M.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Adv. Opt. Mater. (1)

D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, “Four-color metamaterial absorber thz spatial light modulator,” Adv. Opt. Mater. 1, 905 (2013).
[Crossref]

Appl. Phys. Lett. (2)

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Appl.d Phys. Lett. (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl.d Phys. Lett. 93, 121105 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321 (2014).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays,” J. Phys. D: Appl. Phys. 50, 174001 (2017).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Canonica, S. Waldis, F. Zamkotsian, P. Lanzoni, P.-A. Clerc, W. Noell, and N. de Rooij, “Large micromirror array for multi-object spectroscopy in a cryogenic environment,” Proc. SPIE 7208, 72080K (2009).
[Crossref]

Quantum Electron. (1)

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Sci. Adv. (1)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Other (1)

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24 × 24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 ghz,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), p. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Modulation principle. The modulator consists of micromirrors that can be switched between two states. A pixel is comprised of a defined number of mirrors. In this figure, a pixel consists of an ensemble of 3 mirrors. This number can be deliberately changed. In the on-state (left part of Fig. (a)), the mirrors of one pixel are all aligned in a flat surface and reflect the terahertz beam. In the off-state (right part of Fig. (a)), the mirrors of a pixel constitute a reflection grating in Littrow configuration (b), for which the terahertz beam is mainly diffracted to the 1st order back into its origin.

Fig. 2
Fig. 2

Schematic of the simulation model. The terahertz radiation of the port in the upper right corner is directed towards the MMA that modulates the beam. The reflected radiation is detected by an array of probes, depicted in green in the upper left corner.

Fig. 3
Fig. 3

Intensity modulation. Intensity of the detected beam vs. frequency for all mirrors in the on-state (upper curve, oe----i010.tif) and all mirrors in the off-state (lower curve, oe----i011.tif). The data originates from the numerical simulations.

Fig. 4
Fig. 4

Intensity distribution. (a) Analytic calculation (dashed) of the intensity distribution of the 0th and 1st order diffracted beams, the vertical lines mark the maximum and the minimum of the 1st and 0th order, respectively, (b) and the corresponding numerical simulation (solid). Both evidence that the frequency of the maximal 1st order diffraction intensity is lower than the frequency of minimal 0th order diffraction intensity.

Fig. 5
Fig. 5

Diffraction orders. The electric field distribution is shown for two different frequencies, (a) the Littrow frequency at 1.66 THz and (b) the frequency of the highest modulation at 2.2 THz. The directions of the diffraction orders are indicated by the white arrows. The inset shows the spatial intensity distribution, which shows a flat beam profile even for 1.66 THz

Fig. 6
Fig. 6

Modulation depth. The upper curve ( oe----i014.tif) shows the modulation depth of a single-pixel modulator, in which the pixel is composed of 32 micromirrors. The modulation depth is determined between the states, where all 32 micromirrors are in the on-state and all mirrors are in the off-state. The middle curve ( oe----i015.tif) shows the modulation depth of modulator pixels consisting of 8 individual micromirrors. The lowest curve ( oe----i010.tif) depicts the modulation depth between on- and off-pixels for a 4-pixel-modulator with an alternating pattern of on- and off-pixels, in which each pixel consists of 8 micromirrors.

Fig. 7
Fig. 7

Detected Energy. The detected energy is shown for different modulation patterns of the MMA at a frequency of 2.2 THz. The patterns are all possible permutations of 4 pixels. The dashed line shows the hypothetical energy that is expected under the assumption that every pixel contributes one quarter of the total energy, when all 4 pixels are in the on-state. The energy is normalized to the maximum energy when all pixels are switched on.

Fig. 8
Fig. 8

Schematic of the simulation model with object. The object is placed between the waveguide port and the MMA. It conceals half of the area of the second pixel and the total area of the third pixel.

Fig. 9
Fig. 9

Retrieval of the object. The object is retrieved from 4 measurements with a 4-pixel modulator and a single-pixel detector. The image is retrieved by matrix inversion. The red crosses ( oe----i016.tif) denote the reference intensity profile of the beam without object in the beam path, whereas the blue circles depict the intensity distribution of the image of the object ( oe----i017.tif).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( f ) = I 0 sinc 2 ( π d f c 0 cos ( α ) cos ( α θ B ) [ sin ( α θ B ) + sin ( β θ B ) ] )
β = arcsin [ n c 0 f d sin ( α ) ]
I L ( f ) = I ( f ) [ m sinc ( π L ( m d ( sin ( α ) + sin ( β ) ) f c 0 ) ) ] 2
I L , 0 th ( f ) = I 0 sinc 2 ( π d f c 0 cos ( θ B ) sin ( 2 θ B ) )
I L , 1 st ( f ) = I 0 [ m sin c ( π L ( m d ( sin ( α ) + sin ( β ) ) f c 0 ) ) ] 2
I on I off I on + I off

Metrics