Abstract

Linearization of radio frequency (RF) photonic link is critical for advance applications because a nonlinear transfer function of electro-optic modulation limits link dynamic range. Although numerous approaches to suppress third order intermodulation distortion (IMD3) have been demonstrated in previous literatures, many schemes need attendant link optimization when an input RF carrier frequency is tuned over a broad band. In this paper, we propose and demonstrate an adjustment-free linearization approach where high dynamic range could be kept during RF frequency tuning. After a regular low-biased external modulation, the “distortion information” is extracted by a baseband receiver, which then modulates the optically-carried RF signal again. Such distortion extraction and correction is baseband and is independent on the frequency of the RF frequency. The proposal is theoretically analyzed and simulated. In an experiment, IMD3 nonlinear spurs are suppressed over around 60 dB uniformly under typical input RF power, while the carrier is tuned from 4 GHz to 12 GHz. The spurious-free dynamic range (SFDR) is kept around 125 dB within 1-Hz bandwidth without attendant optimization of link parameters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital linearization of multi-carrier RF link with photonic bandpass sampling

Yitang Dai, Xiaodong Liang, Feifei Yin, Yue Zhou, Junyi Zhang, Lan Yu, Jianqiang Li, and Kun Xu
Opt. Express 23(18) 23177-23184 (2015)

Simultaneous noise and distortion reduction of a broadband optical feedforward transmitter for multi-service operation in radio-over-fiber systems

Yon-Tae Moon, Jun Woo Jang, Woon-Kyung Choi, and Young-Wan Choi
Opt. Express 15(19) 12167-12173 (2007)

Forward bias operation of silicon photonic Mach Zehnder modulators for RF applications

Rui Lin Chao, Jin Wei Shi, Aditya Jain, Takako Hirokawa, Akhilesh S.P. Khope, Clint Schow, J.E. Bowers, Roger Helkey, and James F. Buckwalter
Opt. Express 25(19) 23181-23190 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
    [Crossref]
  4. R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
    [Crossref]
  5. V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
  6. V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
    [Crossref]
  7. A. Karim and J. Devenport, “Low noise figure microwave photonic link,” in Proc. IEEE MTT-S Int. Microw. Symp., 1519–1522 (2007).
  8. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26(15), 2718–2724 (2008).
    [Crossref]
  9. X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
    [Crossref]
  10. R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
    [Crossref]
  11. Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
    [Crossref]
  12. G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
    [Crossref]
  13. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
    [Crossref] [PubMed]
  14. T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
    [Crossref]
  15. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).
  16. Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
    [Crossref]
  17. Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).
  18. A. Fard, S. Gupta, and B. Jalali, “Digital broadband linearization technique and its application to photonic time-stretch analog-to-digital converter,” Opt. Lett. 36(7), 1077–1079 (2011).
    [Crossref] [PubMed]
  19. D. Lam, A. M. Fard, B. Buckley, and B. Jalali, “Digital broadband linearization of optical links,” Opt. Lett. 38(4), 446–448 (2013).
    [Crossref] [PubMed]
  20. E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” in Proceedings of International Topical Meeting on Microwave Photonics, 265–268 (2016).
  21. F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
    [Crossref] [PubMed]
  22. http://www.pharad.com/ultra-compact-dither-free-modulator-bias-controller.html#

2016 (1)

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

2015 (2)

2014 (4)

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

2011 (1)

2010 (2)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

2009 (1)

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Ackerman, E. I.

E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” in Proceedings of International Topical Meeting on Microwave Photonics, 265–268 (2016).

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Betts, G. E.

E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” in Proceedings of International Topical Meeting on Microwave Photonics, 265–268 (2016).

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bucholtz, F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Buckley, B.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chang, G. K.

Chen, H.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Chen, M.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Cheng, L.

Clark, T. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

Cowan, G. E. R.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Cox, C. H.

E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” in Proceedings of International Topical Meeting on Microwave Photonics, 265–268 (2016).

Cui, Y.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Dai, J.

Dai, Y.

F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
[Crossref] [PubMed]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Dennis, M. L.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

Devenport, J.

A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26(15), 2718–2724 (2008).
[Crossref]

A. Karim and J. Devenport, “Low noise figure microwave photonic link,” in Proc. IEEE MTT-S Int. Microw. Symp., 1519–1522 (2007).

Diehl, J. F.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

Draa, M. N.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

Fard, A.

Fard, A. M.

Fetterman, H. R.

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Gupta, S.

Hraimel, B.

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Jalali, B.

Karim, A.

A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26(15), 2718–2724 (2008).
[Crossref]

A. Karim and J. Devenport, “Low noise figure microwave photonic link,” in Proc. IEEE MTT-S Int. Microw. Symp., 1519–1522 (2007).

Knapp, P. F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lam, D.

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, J.

F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
[Crossref] [PubMed]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Li, P.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Liang, X.

F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
[Crossref] [PubMed]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Lin, J.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Liu, C.

Liu, T.

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Liu, W.

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
[Crossref]

Lv, Q.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

McKinney, J. D.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

Novack, D.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

O’Connor, S. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Rogge, M. S.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Saha, S.

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shen, D.

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

Shen, Y.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Shi, R.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Swingen, L.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Tu, D.

Urick, V. J.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, J.

Waterhouse, R.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Williams, K. J.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

Wu, K.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Xie, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Xu, K.

F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
[Crossref] [PubMed]

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Yang, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Yin, F.

F. Yin, D. Tu, X. Liang, Y. Dai, J. Zhang, J. Li, and K. Xu, “Dynamic range improvement in analog photonic link by intermodulation-compensation receiver,” Opt. Express 23(9), 11242–11249 (2015).
[Crossref] [PubMed]

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Zhang, J.

Zhang, X.

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Zhu, G.

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
[Crossref]

Zhu, M.

Zhu, R.

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

IEEE Microw. Mag. (1)

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

IEEE Photonics J. (2)

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity modulated analog photonic link using digital post-processing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

IEEE Photonics Technol. Lett. (3)

X. Zhang, S. Saha, R. Zhu, T. Liu, and D. Shen, “Analog pre-distortion circuit for radio over fiber transmission,” IEEE Photonics Technol. Lett. 28(22), 2541–2544 (2016).
[Crossref]

R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband predistortion circuit using zero bias diodes for radio over fiber systems,” IEEE Photonics Technol. Lett. 25(21), 2101–2104 (2013).
[Crossref]

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).

Other (4)

A. Karim and J. Devenport, “Low noise figure microwave photonic link,” in Proc. IEEE MTT-S Int. Microw. Symp., 1519–1522 (2007).

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” in Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” in Proceedings of International Topical Meeting on Microwave Photonics, 265–268 (2016).

http://www.pharad.com/ultra-compact-dither-free-modulator-bias-controller.html#

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The residual IMD3 spurs caused by phase and power deviation.
Fig. 2
Fig. 2 System configuration of the proposed linearization scheme.
Fig. 3
Fig. 3 The output fundamental and IMD3 powers (a) before and (b) after the feedforward linearization. (c) and (d) are two linearized RF spectrums when V π is 4.5 V and 7.5 V, respectively. The resolution bandwidth (RBW) in simulation is 100 kHz.
Fig. 4
Fig. 4 The output RF spectrums (a) before and (b) after the proposed linearization. The IMD3 nonlinear spurs are suppressed significantly.
Fig. 5
Fig. 5 The measured RF powers of fundamental and intermodulation component versus input RF power (a) before and (b) after the proposed linearization.
Fig. 6
Fig. 6 When the input RF carrier frequency is tuned from 4 GHz to 12 GHz, the measured (a) fundamental to IMD3 ratios and (b) SFDR when the linearization is ON and OFF, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( t )=[ a 1 + 3 a 3 4 A 2 ( t ) ]A( t )cos[ ω RF t+ϕ( t ) ], and I 0 ( t )= a 0 + a 2 2 A 2 ( t )
a 1 a 3 = 3 2 a 0 G IMDD BR a 2

Metrics