Abstract

We propose and demonstrate a continuous-wave vector THz imaging system utilizing a photonic generation of two-tone THz signals and self-mixing detection. The proposed system measures amplitude and phase information simultaneously without the local oscillator reference or phase rotation scheme that is required for heterodyne or homodyne detection. In addition, 2π phase ambiguity that occurs when the sample is thicker than the wavelength of THz radiation can be avoided. In this work, THz signal having two frequency components was generated with a uni-traveling-carrier photodiode and electro-optic modulator on the emitter side and detected with a Schottky barrier diode detector used as a self-mixer on the receiver side. The proposed THz vector imaging system exhibited a 50-dB signal to noise ratio and 0.012-rad phase fluctuation with 100-μs integration time at 325-GHz. With the system, we demonstrate two-dimensional THz phase contrast imaging. Considering the recent use of two-dimensional arrays of Schottky barrier diodes as a THz image sensor, the proposed system is greatly advantageous for realizing a real-time THz vector imaging system due to its simple receiver configuration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver

A.H.M. Razibul Islam, Masuduzzaman Bakaul, Ampalavanapillai Nirmalathas, and Graham E. Town
Opt. Express 20(5) 5707-5724 (2012)

Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/ millimeter wave system

Ke Su, Zhiwei Liu, Robert B. Barat, Dale E. Gary, Zoi-Heleni Michalopoulou, and John F. Federici
Appl. Opt. 49(19) E13-E19 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J.-Y. Kim, H. Nishi, H.-J. Song, H. Fukuda, M. Yaita, A. Hirata, and K. Ajito, “Compact and stable THz vector spectroscopy using silicon photonics technology,” Opt. Express 22(6), 7178–7185 (2014).
    [Crossref] [PubMed]
  2. H. Song and J.-I. Song, “Terahertz-Wave Vibrometer Using a Phase-Noise-Compensated Self-Heterodyne System,” IEEE Photonics Technol. Lett. 28(3), 363–366 (2016).
    [Crossref]
  3. T. Nagatsuma, H. Nishii, and T. Ikeo, “Terahertz imaging based on optical coherence tomography,” Photon. Res. 2(4), B64–B69 (2014).
    [Crossref]
  4. Y. Wang, Z. Zhao, Z. Chen, L. Zhang, K. Kang, and J. Deng, “Continuous-wave terahertz phase imaging using a far-infrared laser interferometer,” Appl. Opt. 50(35), 6452–6460 (2011).
    [Crossref] [PubMed]
  5. G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
    [Crossref]
  6. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
    [Crossref]
  7. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  8. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011).
    [Crossref] [PubMed]
  9. J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).
  10. K. Moon, N. Kim, J.-H. Shin, Y.-J. Yoon, S. P. Han, and K. H. Park, “Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity,” Opt. Express 22(3), 2259–2266 (2014).
    [Crossref] [PubMed]
  11. S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
    [Crossref]
  12. I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
    [Crossref]
  13. H. Song and J.-I. Song, “Robust terahertz self-heterodyne system using a phase noise compensation technique,” Opt. Express 23(16), 21181–21192 (2015).
    [Crossref] [PubMed]
  14. H. Song and J.-I. Song, “Optoelectronic feedback loop for phase noise suppression in THz self-heterodyne detection,” IEEE Photonics Technol. Lett. 28(23), 2740–2743 (2016).
    [Crossref]
  15. S. Hisatake, Y. Koda, R. Nakamura, N. Hamada, and T. Nagatsuma, “Terahertz balanced self-heterodyne spectrometer with SNR-limited phase-measurement sensitivity,” Opt. Express 23(20), 26689–26695 (2015).
    [Crossref] [PubMed]
  16. S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
    [Crossref] [PubMed]
  17. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).
  18. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
    [Crossref]
  19. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]

2016 (2)

H. Song and J.-I. Song, “Terahertz-Wave Vibrometer Using a Phase-Noise-Compensated Self-Heterodyne System,” IEEE Photonics Technol. Lett. 28(3), 363–366 (2016).
[Crossref]

H. Song and J.-I. Song, “Optoelectronic feedback loop for phase noise suppression in THz self-heterodyne detection,” IEEE Photonics Technol. Lett. 28(23), 2740–2743 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (4)

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
[Crossref] [PubMed]

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

2011 (2)

2007 (2)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

2005 (2)

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

2004 (1)

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

1995 (1)

Abbott, D.

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

Afshari, E.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Ajito, K.

J.-Y. Kim, H. Nishi, H.-J. Song, H. Fukuda, M. Yaita, A. Hirata, and K. Ajito, “Compact and stable THz vector spectroscopy using silicon photonics technology,” Opt. Express 22(6), 7178–7185 (2014).
[Crossref] [PubMed]

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

Baker, C.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Bradley, I. V.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chen, Z.

Cole, B. E.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Davies, A. G.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Deng, J.

Evans, M. J.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Fischer, B.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Fukada, Y.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

Fukuda, H.

Gregory, I. S.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Hamada, N.

Han, R.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Han, S. P.

Han, S.-P.

Helm, H.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Hirata, A.

Hisatake, S.

S. Hisatake, Y. Koda, R. Nakamura, N. Hamada, and T. Nagatsuma, “Terahertz balanced self-heterodyne spectrometer with SNR-limited phase-measurement sensitivity,” Opt. Express 23(20), 26689–26695 (2015).
[Crossref] [PubMed]

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

Hoffmann, M.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Hu, B. B.

Ikeo, T.

Jansen, C.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Jeon, M. Y.

Jepsen, P. U.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Kang, K.

Kim, D. Y.

S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
[Crossref] [PubMed]

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Kim, J.-Y.

J.-Y. Kim, H. Nishi, H.-J. Song, H. Fukuda, M. Yaita, A. Hirata, and K. Ajito, “Compact and stable THz vector spectroscopy using silicon photonics technology,” Opt. Express 22(6), 7178–7185 (2014).
[Crossref] [PubMed]

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

Kim, N.

Kim, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Kitahara, G.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

Ko, H.

Koch, M.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Koda, Y.

Kukutsu, N.

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

Kürner, T.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Lee, C. W.

Lee, D.

Lee, D. H.

Leem, Y. A.

Linfield, E. H.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Mickan, S. P.

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

Missous, M.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Mittleman, D.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Modjesch, G.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Moon, K.

Nagatsuma, T.

Nakamura, R.

Nishi, H.

Nishii, H.

Noh, S. K.

Nuss, M. C.

O, K. K.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Park, J.-W.

Park, K. H.

Piesiewicz, R.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Png, G. M.

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

Rainsford, T.

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

Ryu, H.-C.

Shichijo, H.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Shin, J.-H.

Song, H.

H. Song and J.-I. Song, “Terahertz-Wave Vibrometer Using a Phase-Noise-Compensated Self-Heterodyne System,” IEEE Photonics Technol. Lett. 28(3), 363–366 (2016).
[Crossref]

H. Song and J.-I. Song, “Optoelectronic feedback loop for phase noise suppression in THz self-heterodyne detection,” IEEE Photonics Technol. Lett. 28(23), 2740–2743 (2016).
[Crossref]

H. Song and J.-I. Song, “Robust terahertz self-heterodyne system using a phase noise compensation technique,” Opt. Express 23(16), 21181–21192 (2015).
[Crossref] [PubMed]

Song, H.-J.

J.-Y. Kim, H. Nishi, H.-J. Song, H. Fukuda, M. Yaita, A. Hirata, and K. Ajito, “Compact and stable THz vector spectroscopy using silicon photonics technology,” Opt. Express 22(6), 7178–7185 (2014).
[Crossref] [PubMed]

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

Song, J.-I.

H. Song and J.-I. Song, “Terahertz-Wave Vibrometer Using a Phase-Noise-Compensated Self-Heterodyne System,” IEEE Photonics Technol. Lett. 28(3), 363–366 (2016).
[Crossref]

H. Song and J.-I. Song, “Optoelectronic feedback loop for phase noise suppression in THz self-heterodyne detection,” IEEE Photonics Technol. Lett. 28(23), 2740–2743 (2016).
[Crossref]

H. Song and J.-I. Song, “Robust terahertz self-heterodyne system using a phase noise compensation technique,” Opt. Express 23(16), 21181–21192 (2015).
[Crossref] [PubMed]

Tribe, W. R.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

Wang, Y.

Wietzke, S.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Yaita, M.

J.-Y. Kim, H. Nishi, H.-J. Song, H. Fukuda, M. Yaita, A. Hirata, and K. Ajito, “Compact and stable THz vector spectroscopy using silicon photonics technology,” Opt. Express 22(6), 7178–7185 (2014).
[Crossref] [PubMed]

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

Yoon, Y.-J.

Yoshimoto, N.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

Zhang, L.

Zhang, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

Zhao, Z.

Appl. Opt. (1)

Electron. Lett. (1)

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase-sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–144 (2004).
[Crossref]

IEEE J. Solid-St. Circulation (1)

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation 99, 1–14 (2013).

IEEE Photonics Technol. Lett. (2)

H. Song and J.-I. Song, “Optoelectronic feedback loop for phase noise suppression in THz self-heterodyne detection,” IEEE Photonics Technol. Lett. 28(23), 2740–2743 (2016).
[Crossref]

H. Song and J.-I. Song, “Terahertz-Wave Vibrometer Using a Phase-Noise-Compensated Self-Heterodyne System,” IEEE Photonics Technol. Lett. 28(3), 363–366 (2016).
[Crossref]

IEEE Sens. J. (1)

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013).
[Crossref]

IEEE. Trans. THz Sic. Technol. (1)

J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “Continuous-wave THz homodyne spectroscopy and imaging system with electro-optical phase modulation for high dynamic range,” IEEE. Trans. THz Sic. Technol. 3(1), 158–164 (2013).

Int. J. Infrared Millim. Waves (1)

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of Building and Plastic Materials in the THz Range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Photon. Res. (1)

Proc. SPIE (1)

G. M. Png, S. P. Mickan, T. Rainsford, and D. Abbott, “Terahertz phase contrast Imaging,” Proc. SPIE 5649, 768–777 (2005).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the CW THz vector imaging system utilizing two-tone signal generation and square-law detection. DSB-SC: double-sideband suppressed carrier. UTC-PD: uni-traveling-carrier photodiode. SBD: Schottky barrier diode.
Fig. 2
Fig. 2 Experiment setup for the vector imaging system using the proposed approach. BPF: bandpass filter. LIA: lock-in amplifier.
Fig. 3
Fig. 3 Optical spectra at the output of (a) the DSB-SC modulation and (b) the EDFA.
Fig. 4
Fig. 4 Stability of the (a) amplitude and (b) phase response of the LIA output. The time constant of the LIA is 100 μs.
Fig. 5
Fig. 5 (a) Amplitude and (b) phase response of the LIA with and without the 4.8-mm-thick polycarbonate plate. The time constant of the LIA is 100 μs.
Fig. 6
Fig. 6 Photographs of (a) the polycarbonate plate embossed with “THz” by laser etching and of (b) the paper envelope with the embossed plate inside.
Fig. 7
Fig. 7 (a) Two-dimensional THz amplitude image and (b) phase contrast image of the embossed polycarbonate plate in the paper envelope. (c) Amplitude and (d) phase response at the fixed Y-axis in (a) and (b), shown by a dotted red line. The time constant of the LIA is 100 μs.
Fig. 8
Fig. 8 (a) Photograph, (b) THz amplitude image, and (c) THz phase contrast image of the bacon slice.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E 2 ( t )= E 0 cos( πV( t ) 2 V π )cos( ω 2 t+ φ n2 )
V( t )= V DC + V m cos( ω m t )
E 2 ( t )= E 0 k=1 ( J 2k1 ( π V m 2 V π )cos( ω 2 t+( 2k1 ) ω m tkπ+ φ n2 ) + J 2k1 ( π V m 2 V π )cos( ω 2 t( 2k1 ) ω m t+kπ+ φ n2 ) ) ,
ω THz1 = ω 2 ω 1 ω m ,
ω THz2 = ω 2 ω 1 + ω m ,
E THz ( t ) A S1 cos( ω THz1 t+ ϕ THz1 + φ n2 φ n1 )+ A S2 cos( ω THz2 t+ ϕ THz2 + φ n2 φ n1 ),
V SBD ( t )DC+ A S 2 cos( 2 ω m t+ ϕ THz2 ϕ THz1 ).
Δϕ= ϕ THz2 ϕ THz1 = ω THz2 d c ( n THz2 1 ) ω THz1 d c ( n THz1 1 )2 ω m d c ( n1 ),

Metrics