Abstract

We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than −18.8 dB. The inter-mode crosstalk for the same optical link is less than −22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10−9) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the “cross” state and 116.2 mW in the “bar” state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching

Ting Zhou, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, and Lin Yang
Opt. Express 26(7) 8375-8384 (2018)

Four-port mode-selective silicon optical router for on-chip optical interconnect

Hao Jia, Ting Zhou, Xin Fu, Jianfeng Ding, Lei Zhang, and Lin Yang
Opt. Express 26(8) 9740-9748 (2018)

High-speed two-mode switch for mode-division multiplexing optical networks

Yule Xiong, Rubana B. Priti, and Odile Liboiron-Ladouceur
Optica 4(9) 1098-1102 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
    [Crossref]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  3. A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
    [Crossref]
  4. H. Gu, J. Xu, and W. Zhang, “A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip,” in Proc. of the conference on Design, Automation and Test in Europe, 3–8 (2009).
  5. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” in IEEE High-Performance Interconnects, Symposium, 21–30 (2008).
    [Crossref]
  6. H. Gu, K. Mo, J. Xu, and W. Zhang, “A low-power low-cost optical Router for Optical Networks-on-Chip in Multiprocessor Systems-on-Chip,” in IEEE ISVLSI, 9–24 (2009).
    [Crossref]
  7. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [Crossref] [PubMed]
  8. S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
    [Crossref]
  9. Z. Zhang, J. Hu, H. Chen, F. Li, L. Zhao, J. Gui, and Q. Fang, “Low-crosstalk silicon photonics arrayed waveguide grating,” Chin. Opt. Lett. 15(4), 041301 (2017).
    [Crossref]
  10. X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “A generic optical router design for photonic network-on-chips,” J. Lightwave Technol. 30(3), 368–376 (2012).
    [Crossref]
  11. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  12. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [Crossref] [PubMed]
  13. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
    [Crossref]
  14. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  15. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Opt. Express 19(20), 18945–18955 (2011).
    [Crossref] [PubMed]
  16. T. Hu, H. Qiu, P. Yu, C. Qiu, W. Wang, X. Jiang, M. Yang, and J. Yang, “Wavelength-selective 4 × 4 nonblocking silicon optical router for networks-on-chip,” Opt. Lett. 36(23), 4710–4712 (2011).
    [Crossref] [PubMed]
  17. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
    [Crossref] [PubMed]
  18. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24(9), 9295–9307 (2016).
    [Crossref] [PubMed]
  19. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
    [Crossref] [PubMed]
  20. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64 (2016).
    [Crossref]
  21. R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  22. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
    [Crossref]
  23. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  24. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  25. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [Crossref] [PubMed]
  26. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  27. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  28. W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
    [Crossref]
  29. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  30. M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23(25), 32130–32138 (2015).
    [Crossref] [PubMed]
  31. Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1 × 2 Mode- and Polarization-selective Switch,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W4E.2.
    [Crossref]
  32. H. Xu and Y. Shi, “Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers,” Opt. Lett. 41(22), 5381–5384 (2016).
    [Crossref] [PubMed]
  33. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  34. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
    [Crossref]

2017 (2)

Z. Zhang, J. Hu, H. Chen, F. Li, L. Zhao, J. Gui, and Q. Fang, “Low-crosstalk silicon photonics arrayed waveguide grating,” Chin. Opt. Lett. 15(4), 041301 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (4)

2014 (5)

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
[Crossref]

W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “A generic optical router design for photonic network-on-chips,” J. Lightwave Technol. 30(3), 368–376 (2012).
[Crossref]

2011 (4)

2010 (2)

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

2005 (1)

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Ang, K. W.

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Asanovic, K.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Assefa, S.

Bai, N.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Batten, C.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Beamer, S.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Bergman, K.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Biberman, A.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Bigot-Astruc, M.

Cardenas, J.

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, G.

Chen, H.

Chen, J.

Chen, L.

Chen, S.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref] [PubMed]

Cong, G.

Correa, R. A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Dadap, J. I.

Dai, D.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Ding, J.

Doany, F. E.

Driscoll, J. B.

Fang, Q.

Fu, X.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Green, W. M. J.

Greenberg, M.

Grote, R. R.

Gui, J.

Han, S.

He, S.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Hu, J.

Hu, T.

Huang, Y. Z.

Huijskens, F. M.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ikeda, K.

Jahnes, C. V.

Ji, R.

Jian, W.

W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Jiang, G.

Jiang, X.

Jiang, Y.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Joshi, A.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Kash, J. A.

Kawashima, H.

Kimura, T.

Koonen, A. M. J.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Koshino, K.

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Kwon, Y. J.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Kwong, D. L.

Lee, B. G.

Li, D.

Li, F.

Li, G.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Li, X.

Li, Y.

Li, Z.

Linares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Liow, T. Y.

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Lo, G. Q.

Lopez, E. A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lu, L.

Lu, M.

Lu, Y.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Matsumaro, K.

May Arrioja, D.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Molin, D.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Muller, R. S.

Namiki, S.

Ohtsuka, M.

Okonkwo, C. M.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Orenstein, M.

Osgood, R. M.

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Poon, A. W.

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref] [PubMed]

Qiu, C.

Qiu, H.

Quack, N.

Richardson, M. C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Schow, C. L.

Schülzgen, A.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Seki, M.

Seok, T. J.

Shamim, I.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Shao, H.

Sherwood-Droz, N.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Shi, Y.

Sillard, P.

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Song, J. F.

Souhan, B.

Stern, B.

Stojanovic, V.

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

Suda, S.

Sugaya, T.

Suzuki, K.

Tan, X.

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref] [PubMed]

Tanizawa, K.

Tian, Y.

Toyama, M.

Tzuang, L. D.

Van Campenhout, J.

Van Uden, R. G. H.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Vlasov, Y. A.

Waardt, H.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, H.

Wang, J.

Wang, M.

Wang, S. Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Wang, W.

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Wu, M. C.

Xia, C.

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Xu, H.

Yang, J.

Yang, L.

Yang, M.

Yang, Y. D.

Ye, M.

Yokoyama, N.

Yu, H.

Yu, M. B.

Yu, P.

Yu, Y.

Zhang, L.

Zhang, X.

Zhang, Z.

Zhao, L.

Zhao, S.

Zhou, L.

Zhou, P.

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Zhu, W.

Zhu, X.

Chin. Opt. Lett. (1)

IEEE Photonics Technol. Lett. (2)

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(17), 926–928 (2010).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. C. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

W. Jian, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Nat. Commun. (2)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

R. G. H. Van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (11)

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
[Crossref] [PubMed]

M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23(25), 32130–32138 (2015).
[Crossref] [PubMed]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24(9), 9295–9307 (2016).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Opt. Express 19(20), 18945–18955 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (2)

Proc. IEEE (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref] [PubMed]

Other (5)

A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proc. 3rd ACM/IEEE International Symposium on Networks-on-Chip, 124–133 (2009).
[Crossref]

H. Gu, J. Xu, and W. Zhang, “A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip,” in Proc. of the conference on Design, Automation and Test in Europe, 3–8 (2009).

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” in IEEE High-Performance Interconnects, Symposium, 21–30 (2008).
[Crossref]

H. Gu, K. Mo, J. Xu, and W. Zhang, “A low-power low-cost optical Router for Optical Networks-on-Chip in Multiprocessor Systems-on-Chip,” in IEEE ISVLSI, 9–24 (2009).
[Crossref]

Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, “Silicon 1 × 2 Mode- and Polarization-selective Switch,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W4E.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) General scheme of the 2 × 2 multimode optical switch. (b) Detailed architecture of the 2 × 2 multimode optical switch (M-MUX: mode multiplexer; M-DEMUX: mode de-multiplexer; MM-OS: multimode optical switch; SM-OS: single-mode optical switch; I1Mi and I2Mi: the auxiliary input single-mode waveguide for the ith spatial mode of the input multimode waveguides I1 and I2; O1Mi and O2Mi: the auxiliary single-mode waveguide for the ith spatial mode of the output multimode waveguides O1 and O2).
Fig. 2
Fig. 2 Micrograph of the 2 × 2 silicon multimode optical switch.
Fig. 3
Fig. 3 Experimental setup for characterizing the device (ASE: amplified spontaneous emission; TL: tunable laser; PC: polarization controller; DCP: direct-current powers; DUT: device under test; PPG: pulse pattern generator; AFG: arbitrary function generator; OSA: optical spectrum analyzer; DCA: digital communication analyzer; EDFA: erbium-doped fiber amplifier; MD: modulator; RTO: real-time oscilloscope).
Fig. 4
Fig. 4 Transmission spectra for the reference structure including one mode de-multiplexer and one mode multiplexer (a). Normalized transmission spectra for the optical links I1 to O1 (b), I1 to O2 (c), I2 to O1 (d) and I2 to O2 (e).
Fig. 5
Fig. 5 40 Gbps eye diagrams for the data transmission through the optical links I1Mi to O1Mi and I2Mi to O2Mi in the “bar” state and the optical links I1Mi to O2Mi and I2Mi to O1Mi in the “cross” state (i = 1, …, 4) at the wavelength of 1550 nm.
Fig. 6
Fig. 6 (a) BERs for the 25 Gbps data transmission through the optical links I2Mi to O1Mi in the “cross” state and the optical links I1Mi to O1Mi in the “bar” state (i = 1, …, 4) at the wavelength of 1550 nm. (b) BERs for the 25 Gbps data transmission through the optical link I2M4 to O1M4 at the wavelength of 1530 nm, 1550 nm and 1565 nm.

Tables (2)

Tables Icon

Table 1 Propagation loss and optical crosstalk for all optical links of the multimode optical switch in the wavelength of 1525-1565 nm (PL: propagation loss, OCT: optical crosstalk).

Tables Icon

Table 2 Driving voltages and power consumptions of the single mode optical switches.

Metrics