Abstract

We report an ultra-compact optical zoom endoscope containing two tunable Alvarez lenses. The two tunable lenses are controlled synchronously by piezoelectric benders to move in directions perpendicular to the optical axis to achieve optical zoom while keeping images in clear focus without moving the scope. The piezoelectric benders are arranged circumferentially surrounding the endoscope optics with a diameter about 2 mm, which results in an ultra-compact form. The demonstrated endoscope is capable of optical zoom close to 3 × from field of view (FOV) 50° to 18° continuously with the required movements for its constituent optical elements less than 110 μm. Such optical zoom endoscopes may find their potential uses in healthcare and industrial inspection systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Miniature adjustable-focus endoscope with a solid electrically tunable lens

Yongchao Zou, Wei Zhang, Fook Siong Chau, and Guangya Zhou
Opt. Express 23(16) 20582-20592 (2015)

Microelectromechanically-driven miniature adaptive Alvarez lens

Guangya Zhou, Hongbin Yu, and Fook Siong Chau
Opt. Express 21(1) 1226-1233 (2013)

Endoscope field of view measurement

Quanzeng Wang, Azadeh Khanicheh, Dennis Leiner, David Shafer, and Jurgen Zobel
Biomed. Opt. Express 8(3) 1441-1454 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
    [Crossref] [PubMed]
  2. J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).
  3. Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
    [Crossref] [PubMed]
  4. Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
    [Crossref] [PubMed]
  5. R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
    [Crossref]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  7. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
    [Crossref] [PubMed]
  8. F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
    [Crossref]
  9. A. Werber and H. Zappe, “Tunable Pneumatic Microoptics,” J. Microelectromech. Syst. 17(5), 1218–1227 (2008).
    [Crossref]
  10. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
    [Crossref] [PubMed]
  11. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  12. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  13. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  14. X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
    [Crossref]
  15. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
    [Crossref]
  16. H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  17. M. S. Chen, P. J. Chen, M. Chen, and Y. H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
    [Crossref] [PubMed]
  18. S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Moems and Miniaturized Systems X 7930, 793008 (2011).
    [Crossref]
  19. S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
    [Crossref]
  20. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
    [Crossref] [PubMed]
  21. P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
    [Crossref]
  22. G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
    [Crossref] [PubMed]
  23. W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
    [Crossref]
  24. L. W. Alvarez, “Transverse Optics 1. Thin Lens with Variable Spherical Power,” J. Opt. Soc. Am. 62, 727 (1972).
  25. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970).
    [Crossref] [PubMed]
  26. S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
    [Crossref] [PubMed]
  27. J. Schwiegerling and C. Paleta-Toxqui, “Minimal movement zoom lens,” Appl. Opt. 48(10), 1932–1935 (2009).
    [Crossref] [PubMed]
  28. Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
    [Crossref] [PubMed]
  29. Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
    [Crossref]
  30. Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).
  31. M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
    [Crossref]
  32. H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 23, 20582–20592 (2015).
    [PubMed]
  33. Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
    [Crossref] [PubMed]
  34. G. Zhou, H. Yu, and F. S. Chau, MEMS-based zoom lens system, US Patent 9,274,320, 2016.
  35. Note: assuming that a lens with fixed optical power ϕ0 and a tunable lens with tunable optical power range [ϕ1, ϕ2] are separated with a gap t, the overall optical power tuning range of the pair is (Φ2 - Φ1) = (ϕ2 - ϕ1)(1-tϕ0), which is increased when ϕ0 < 0.
  36. Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
    [Crossref]
  37. H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
    [Crossref]
  38. MEMSCAP, Inc., http://www.memscap.com/products/mumps/soimumps .
  39. A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
    [Crossref]

2017 (1)

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (2)

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

M. S. Chen, P. J. Chen, M. Chen, and Y. H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref] [PubMed]

2013 (4)

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

2011 (4)

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Moems and Miniaturized Systems X 7930, 793008 (2011).
[Crossref]

2010 (3)

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (4)

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

A. Werber and H. Zappe, “Tunable Pneumatic Microoptics,” J. Microelectromech. Syst. 17(5), 1218–1227 (2008).
[Crossref]

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
[Crossref] [PubMed]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

2006 (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

2004 (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

2002 (3)

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

1972 (1)

L. W. Alvarez, “Transverse Optics 1. Thin Lens with Variable Spherical Power,” J. Opt. Soc. Am. 62, 727 (1972).

1970 (1)

Abu Dayyeh, B. K.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Aljasem, K.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Alvarez, L. W.

L. W. Alvarez, “Transverse Optics 1. Thin Lens with Variable Spherical Power,” J. Opt. Soc. Am. 62, 727 (1972).

Arimura, Y.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Awakawa, T.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Baer, E.

Banerjee, S.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Barbero, S.

Beadie, G.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Bhat, Y. M.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Chau, F. S.

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
[Crossref] [PubMed]

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
[Crossref] [PubMed]

Chauhan, S. S.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Chen, H. S.

Chen, M.

Chen, M. S.

Chen, P. J.

Cheng, Y. C.

Cheon, G. J.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Cho, J. Y.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Choi, W. B.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Comm, A. T.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Daweke, R. D. G.

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

Dickensheets, D. L.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Du, Y.

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Endo, T.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Fan, Y. H.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Fedder, G. K.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

Gauza, S.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gottlieb, K. T.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Gould, J. C.

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Han, S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Heise, C. P.

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hiltner, A.

Hsieh, H. T.

Hsu, W. Y.

Hwang, J. H.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Imai, K.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Inoue, H.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Itoh, F.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Iwai, T.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Jain, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

Jang, J. Y.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Jiang, H. R.

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Jung, J. S.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Kang, M. S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kawano, T.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Kaylor, B. M.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Kazmierczak, T.

Kelp, M.

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

Kim, B. S.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Kim, Y. M.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Komanduri, S.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Konda, V.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Kopa, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

Kopp, D.

Krogmann, F.

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Kuiper, S.

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Moems and Miniaturized Systems X 7930, 793008 (2011).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kumagai, Y.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Kumar, A. S.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
[Crossref] [PubMed]

Lee, J. S.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Lee, M. S.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Lehr, H.

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

Lepkowicz, R. S.

Leung, H. M.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
[Crossref] [PubMed]

Liebeskind, J.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Liebetraut, P.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Lin, H. C.

Lin, M. H.

Lin, T.

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

Lin, X.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Lin, Y. H.

Lo, S. K.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Lohmann, A. W.

Lutzenberger, B. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Manfredi, M. A.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Maple, J. T.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Min, N. K.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Moghimi, M. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Monch, W.

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Monnich, O.

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

Murad, F. M.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Nagai, K.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Oldham, K.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Osiak, P.

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

Paleta-Toxqui, C.

Pan, Y. T.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

Petsch, S.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Polcawich, R. G.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Ponting, M.

Pulskamp, J. S.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Qiu, Z.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Ren, H. W.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Rhee, C. H.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Ryu, K. H.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Sandrock, M. L.

Sasaki, S.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Schwiegerling, J.

Seifert, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Seo, J. H.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seo, S. W.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Shim, C. S.

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

Shirk, J. S.

Siddiqui, U. D.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Smith, C. T.

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Su, G. D. J.

Sung, M. Y.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Takahashi, H.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Tang, X.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Tian, F.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

Wallace, M. B.

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

Wang, T.

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

Wei, H. C.

Werber, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

A. Werber and H. Zappe, “Tunable Pneumatic Microoptics,” J. Microelectromech. Syst. 17(5), 1218–1227 (2008).
[Crossref]

Wiggins, M. J.

Wu, S. T.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xie, H. K.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

Yamamoto, H.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Yamashita, K.

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

Yang, Y.

Yu, H.

Zappe, H.

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref] [PubMed]

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

A. Werber and H. Zappe, “Tunable Pneumatic Microoptics,” J. Microelectromech. Syst. 17(5), 1218–1227 (2008).
[Crossref]

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

Zeng, X. F.

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Zhang, W.

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
[Crossref] [PubMed]

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

Zhou, G.

Zhou, G. Y.

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

Zou, Y.

Zou, Y. C.

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Endoscopy (1)

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Gastrointest. Endosc. (3)

Y. M. Bhat, B. K. Abu Dayyeh, S. S. Chauhan, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F. M. Murad, U. D. Siddiqui, S. Banerjee, M. B. Wallace, and A. T. Comm, “High-definition and high-magnification endoscopes,” Gastrointest. Endosc. 80(6), 919–927 (2014).
[Crossref] [PubMed]

T. Endo, T. Awakawa, H. Takahashi, Y. Arimura, F. Itoh, K. Yamashita, S. Sasaki, H. Yamamoto, X. Tang, and K. Imai, “Classification of Barrett’s epithelium by magnifying endoscopy,” Gastrointest. Endosc. 55(6), 641–647 (2002).
[Crossref] [PubMed]

J. Y. Jang, J. Y. Cho, J. S. Jung, K. H. Ryu, G. J. Cheon, J. S. Lee, M. S. Lee, C. S. Shim, and B. S. Kim, “The usefulness of magnifying endoscopy for iodine-unstained lesion of esophagus in high-risk populations of esophageal cancer,” Gastrointest. Endosc. 55, Ab221 (2002).

IEEE J. Sel. Top. Quantum Electron. (2)

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of Miniature Tunable Multi-Element Alvarez Lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 100–107 (2015).
[Crossref]

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS (1)

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy”, J. Micro/Nanolith. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

J. Microelectromech. Syst. (4)

W. Zhang, Y. C. Zou, T. Lin, F. S. Chau, and G. Y. Zhou, “Development of Miniature Camera Module Integrated With Solid Tunable Lens Driven by MEMS-Thermal Actuator,” J. Microelectromech. Syst. 26(1), 84–94 (2017).
[Crossref]

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for Tunable Microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

A. Werber and H. Zappe, “Tunable Pneumatic Microoptics,” J. Microelectromech. Syst. 17(5), 1218–1227 (2008).
[Crossref]

X. F. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. R. Jiang, “Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

J. Micromech. Microeng. (2)

Z. Qiu, J. S. Pulskamp, X. Lin, C. H. Rhee, T. Wang, R. G. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng. 20(7), 075016 (2010).
[Crossref] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

J. Opt. (1)

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

L. W. Alvarez, “Transverse Optics 1. Thin Lens with Variable Spherical Power,” J. Opt. Soc. Am. 62, 727 (1972).

Jpn. J. Appl. Phys. (1)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Light Sci. Appl. (1)

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Moems and Miniaturized Systems X (1)

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Moems and Miniaturized Systems X 7930, 793008 (2011).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (8)

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
[Crossref] [PubMed]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

M. S. Chen, P. J. Chen, M. Chen, and Y. H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref] [PubMed]

H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 23, 20582–20592 (2015).
[PubMed]

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
[Crossref] [PubMed]

S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Y. C. Zou, W. Zhang, F. S. Chau, and G. Y. Zhou, “Solid electrically tunable dual-focus lens using freeform surfaces and microelectromechanical-systems actuator,” Opt. Lett. 18, 11097–11104 (2010).

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref] [PubMed]

G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
[Crossref] [PubMed]

Other (4)

R. D. G. Daweke, M. Kelp, H. Lehr, O. Monnich, and P. Osiak, “Electromagnetic Direct Linear Drives for Medical Endoscopes,” in 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2014), pp. 245–251.
[Crossref]

G. Zhou, H. Yu, and F. S. Chau, MEMS-based zoom lens system, US Patent 9,274,320, 2016.

Note: assuming that a lens with fixed optical power ϕ0 and a tunable lens with tunable optical power range [ϕ1, ϕ2] are separated with a gap t, the overall optical power tuning range of the pair is (Φ2 - Φ1) = (ϕ2 - ϕ1)(1-tϕ0), which is increased when ϕ0 < 0.

MEMSCAP, Inc., http://www.memscap.com/products/mumps/soimumps .

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1 (optical zoom demonstration)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the proposed zoom endoscope. The left inset shows a detailed zoom-in view of the endoscope optics and the right inset illustrates the operation mode of the piezoelectric bender.

Fig. 2
Fig. 2

(a) Starting configuration of zoom optics with two varifocal lenses with positions fixed on the optical axis. (b) Tunable lens B is replaced with an aperture, lens 3 and lens 4 to reduce the overall optics diameter. (c) Tunable lens A is replaced with lens1 and lens 2 to increase the endoscope FOV or to reduce the focal length tuning range requirement for the same FOV. (d) Ray-tracing results of the paraxial design.

Fig. 3
Fig. 3

(a) YZ view and (b) XZ view of the endoscope optics with three zoom configurations form top (telephoto) to bottom (wide-angle).

Fig. 4
Fig. 4

(a) OTF, simulated image, and ray-tracing spot diagrams of endoscope at configuration one (optical zoom: 1 × , FOV: 49.8° degrees). (b) OTF, simulated image, and ray-tracing spot diagrams of endoscope at configuration two (optical zoom: 1.9 × , FOV: 26° degrees). (c) OTF, simulated image, and ray-tracing spot diagrams of endoscope at configuration three (optical zoom: 2.8 × , FOV: 18° degrees). Circles in spot diagrams indicate the sizes of the diffraction-limited Airy spots.

Fig. 5
Fig. 5

Endoscope assembly process. (a) Free-form optical elements are aligned, inserted, and fixed on their respective platforms on SOI chips. (b) two paired SOI chips are aligned and secured to form a tunable Alvarez lens. (c) Precision machined assembly jig. (d) SOI chips having the optical elements of the endoscope are aligned and fixed with the assembly jig. (e) Imaging fiber bundle is aligned to the optical elements, and piezoelectric benders are inserted into their respective driving slots on the SOI platform and secured to the fiber bundle. (f) After the assembly process, the silicon springs on the SOI chips are broken to detach the endoscope from the assembly jig.

Fig. 6
Fig. 6

(a) The negative lens fitted on its mounting SOI chip. (b) Free-form optical element secured on a SOI chip. (c) Two paired free-form optical elements forming a tunable Alvarez lens. (d) and (e) show respectively the front and side views of the optical zoom endoscope.

Fig. 7
Fig. 7

(a) Displacement-voltage relationship of a typical piezoelectric bender used in the endoscope. (b) Measured response time of a tunable Alvarez lens. (c) to (e) Experimental demonstration of optical zooming (about 1 × , 2 × , and 3 × from left to right) with a target placed at about 20 mm away from the endoscope (Visualization 1).

Tables (2)

Tables Icon

Table 1 Summary of the performance of the final zoom system

Tables Icon

Table 2 Surface coefficients of the final zoom endoscope design

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z= c r 2 1+ 1( 1+k ) c 2 r 2 + i=1 M a i r 2i + i=1 N A i Z i ( ρ,φ ) ,
z= c r 2 1+ 1( 1+k ) c 2 r 2 + i=1 N A i E i ( x,y ) ,

Metrics