Abstract

Photoinitiator plays a crucial role on photopolymer. Unlike photoinitiator phenanthrenequinone (PQ), the solubility of Irgacure 784 dissolved in MMA is very high. In this paper, we use Irgacure 784 as photoinitiator doped in poly(methyl methacrylate)(PMMA)to make a bulk photopolymer with high photoinitiator concentration for holographic data storage. The effect of concentration of photoinitiator and record intensity are experimentally investigated. The results reveal the material has an optimum condition in holographic recording. A comparison between our material and the material of PQ doped PMMA is carried out by experiment. It is found that our material has better performance on diffraction efficiency, refractive index modulation and recording sensitivity. Besides, this material also has polarization sensitivity, which can be applied to polarization holography. With the capacity of recording polarization holography and conventional intensity holography simultaneously, the Irgacure 784 doped PMMA material is expected to be applied in holographic data storage.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA

Fenglan Fan, Ying Liu, Yifan Hong, Jinliang Zang, An’an Wu, Tianbo Zhao, Guoguo Kang, Xiaodi Tan, and Tsutomu Shimura
Opt. Express 26(14) 17794-17803 (2018)

Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Mater. Express 8(6) 1441-1453 (2018)

Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage

Shiuan Huei Lin, Ken Y. Hsu, Wei-Zheng Chen, and Wha Tzong Whang
Opt. Lett. 25(7) 451-453 (2000)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
    [Crossref] [PubMed]
  2. H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE T. Magn. 43(2), 943–947 (2007).
    [Crossref]
  3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  4. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40(26), 4721–4727 (2001).
    [Crossref] [PubMed]
  5. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
    [Crossref]
  6. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  7. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  8. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
    [Crossref] [PubMed]
  9. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.
  10. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  11. A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
    [Crossref] [PubMed]
  12. J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
    [Crossref] [PubMed]
  13. Y. Zhang, G. Kang, J. Zang, J. Wang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle,” Opt. Lett. 41(17), 4126–4129 (2016).
    [Crossref] [PubMed]
  14. J. Zang, G. Kang, P. Li, Y. Liu, F. Lan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
    [Crossref] [PubMed]
  15. Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
    [Crossref]
  16. W. S. Kim, Y.-C. Jeong, and J. K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
    [Crossref] [PubMed]
  17. T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
    [Crossref]
  18. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [Crossref] [PubMed]
  19. U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
    [Crossref]
  20. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt. Lett. 24(10), 658–660 (1999).
    [Crossref] [PubMed]
  21. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [Crossref] [PubMed]
  22. Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
    [Crossref]
  23. A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
    [Crossref]
  24. M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
    [Crossref]
  25. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
    [Crossref]
  26. S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).
  27. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

2015 (3)

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

2014 (1)

2011 (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

2010 (1)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

2009 (2)

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

2007 (1)

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE T. Magn. 43(2), 943–947 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

2001 (1)

2000 (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[Crossref] [PubMed]

1993 (1)

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

1985 (1)

1984 (3)

Ando, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Barada, D.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Boyd, J. E.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]

Cao, L.

Caufield, H. J.

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Colvin, V. L.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]

Dhar, L.

Feely, C. A.

Fujimura, R.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Fukuda, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Gleeson, M. R.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Hong, Y.

Horimai, H.

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE T. Magn. 43(2), 943–947 (2007).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Hsiao, Y. N.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Hsiao, Y.-N.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).

Hsu, K. Y.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).

Huang, Y.

Jeong, Y.-C.

Jin, G.

Kang, G.

Kawana, M.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Kim, W. S.

Kuroda, K.

J. Zang, G. Kang, P. Li, Y. Liu, F. Lan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
[Crossref] [PubMed]

Y. Zhang, G. Kang, J. Zang, J. Wang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle,” Opt. Lett. 41(17), 4126–4129 (2016).
[Crossref] [PubMed]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40(26), 4721–4727 (2001).
[Crossref] [PubMed]

Lan, F.

Li, C.

Li, J.

Li, P.

Li, Z.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Lin, S. H.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Lin, X.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Liu, S.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Liu, Y.

Martin, S.

Masaki, K.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Matoba, O.

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Mirsalehi, M. M.

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Mogil’nyi, V. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[Crossref] [PubMed]

Nikolova, L.

Park, J. K.

Patel, S. S.

Psaltis, D.

Rhee, U. S.

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Schilling, M. L.

Schnoes, M. G.

Shamir, J.

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Sheridan, J. T.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Shimizu, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Shimura, T.

J. Zang, G. Kang, P. Li, Y. Liu, F. Lan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

Y. Zhang, G. Kang, J. Zang, J. Wang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle,” Opt. Lett. 41(17), 4126–4129 (2016).
[Crossref] [PubMed]

J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
[Crossref] [PubMed]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40(26), 4721–4727 (2001).
[Crossref] [PubMed]

Solomatine, I.

Stankevich, A. I.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

Steckman, G. J.

Stoyanova, K.

Takahashi, J.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Tan, X.

J. Zang, G. Kang, P. Li, Y. Liu, F. Lan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

Y. Zhang, G. Kang, J. Zang, J. Wang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle,” Opt. Lett. 41(17), 4126–4129 (2016).
[Crossref] [PubMed]

J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
[Crossref] [PubMed]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE T. Magn. 43(2), 943–947 (2007).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40(26), 4721–4727 (2001).
[Crossref] [PubMed]

Toal, V.

Todorov, T.

Tomita, Y.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Tomova, N.

Trentler, T. J.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]

Trofimova, A. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

Uchida, E.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Vikram, C. S.

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Wang, J.

Wang, Z.

Whang, W. T.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Wiltzius, P.

Wu, A.

Yasui, S.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Yatagai, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Zang, J.

Zhang, Y.

Zhou, G.

Appl. Opt. (6)

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin−photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]

IEEE T. Magn. (1)

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE T. Magn. 43(2), 943–947 (2007).
[Crossref]

J. Appl. Phys. (2)

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

J. Appl. Spectrosc. (1)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

J. Opt. A-Pure Appl. Op. (1)

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu,“Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A-Pure Appl. Op. 11(2), 024012 (2009).

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Opt. Eng. (2)

U. S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[Crossref]

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate)hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Rev. (2)

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The opticalpolarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials forvolume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[Crossref] [PubMed]

Other (1)

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An Investigation on Polarization-sensitive Materials,”in Proceeding of IEEE 2011 ICO International Conference on InformationPhotonics(IP)(IEEE,2011), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The chemical structures of all compounds for the material of Irgacure 784 doped PMMA photopolymer: (a) MMA, (b) Irgacure 784, (c) AIBN.
Fig. 2
Fig. 2 UV/Vis absorption spectra of Irgacure784/PMMA photopolymer: (a) the thickness of material was 1.5mm, (b) the weight ratio of the photosensitizer was 5wt%.
Fig. 3
Fig. 3 The experimental setup for holographic recording by the green laser (532nm): M, mirror; HWP, half-wave plate; PBS, polarization beam splitter; θ = 0°.
Fig. 4
Fig. 4 Temporal evolution of diffraction efficiency for materials with different photosensitizer concentration.
Fig. 5
Fig. 5 Temporal evolution of diffraction efficiency in PQ/PMMA and Irgacure 784/PMMA material.
Fig. 6
Fig. 6 Temporal evolution of diffraction efficiency for material recording by different recording intensities.
Fig. 7
Fig. 7 Image reconstruction results in traditional holography system: (a) original reflected image and (b) reconstructed image, (c) reconstructed image of translation 5µm multiplexing, (d) reconstructed image of translation 5µm multiplexing fifth time.
Fig. 8
Fig. 8 Polarization holography measurement: (a) schematic diagram of polarization holography, (b) temporal evolution of diffraction efficiency.
Fig. 9
Fig. 9 Image reconstruction results in polarization holography system: (a) original transmitted image and (b) reconstructed image.

Tables (1)

Tables Icon

Table 1 The characteristics of PQ/PMMA and Irgacure 784/PMMA samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= 1 I 0 d ( η t ) .

Metrics