Abstract

We report on an advancement to leaky-mode modulators that allows for backside emission from the device. This is accomplished by adding a high spatial frequency surface relief grating (~300 nm period) to the backside of the modulator. The outcome being a theoretical arbitrary increase in usable output aperture, at the cost of angular deflection. Using backside emission, it is now possible for leaky mode modulators to be used to create transparent, holographic, direct-view near-eye displays.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays

Kamran Qaderi and Daniel E. Smalley
Opt. Express 24(18) 20831-20841 (2016)

Paired leaky mode spatial light modulators with a 28° total deflection angle

Kamran Qaderi, Christopher Leach, and Daniel E. Smalley
Opt. Lett. 42(7) 1345-1348 (2017)

Surface-emitting electroholographic SAW modulator

Joy C. Perkinson, Michael G. Moebius, Elizabeth J. Brundage, William A. Teynor, Steven J. Byrnes, James C. Hsiao, William D. Sawyer, Dennis M. Callahan, Ian W. Frank, John J. LeBlanc, and Gregg E. Favalora
Opt. Express 28(2) 1585-1594 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).
  2. P. St-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
    [Crossref]
  3. S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, Jr., “Frequency division of color for holovideo displays using anisotropic leaky mode couplers,” in Digital Holography and Three-Dimensional Imaging (2015), paper DM2A. 2.
  4. D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
    [Crossref]
  5. D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref] [PubMed]
  6. C. S. Tsai, Guided-wave Acousto-Optics: Interactions, Devices, and Applications (Springer Science & Business Media, 2013).
  7. C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
    [Crossref]
  8. S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” Jove 109, (2016).
  9. A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
    [Crossref] [PubMed]
  10. S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
    [Crossref]
  11. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
    [Crossref]
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  13. N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
    [Crossref]
  14. H. M. Traquair, An Introduction to Clinical Perimetry: With a Foreword by Norman M. Dott (H. Kimpton, 1949).

2015 (4)

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref] [PubMed]

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
[Crossref]

2013 (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

2008 (1)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

1998 (1)

C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
[Crossref]

1995 (1)

P. St-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

1981 (1)

Barabas, J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Bove, V. M.

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Chang, C. L.

C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
[Crossref]

Do, N. T.

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

Gaylord, T. K.

Haymore, B.

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref] [PubMed]

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Henrie, A.

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref] [PubMed]

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
[Crossref]

Jolly, S.

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Kimball, J.

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

Leach, C.

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
[Crossref]

Li, Q.

C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
[Crossref]

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Matteo, A. M.

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

McLaughlin, S.

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
[Crossref]

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

Moharam, M. G.

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Smalley, D.

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

Smalley, D. E.

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref] [PubMed]

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54(12), 3732–3736 (2015).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Smithwick, Q. Y. J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

St-Hilaire, P.

P. St-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

Su, J.

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Tsai, C. S.

C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
[Crossref]

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

Yoo, J.

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Appl. Opt. (1)

Fiber Integr. Opt. (1)

C. S. Tsai, Q. Li, and C. L. Chang, “Guided-wave two-dimensional acousto-optic scanner using proton-exchanged lithium niobate waveguide,” Fiber Integr. Opt. 17(3), 157–166 (1998).
[Crossref]

J. Appl. Phys. (1)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

D. E. Smalley, S. McLaughlin, C. Leach, J. Kimball, V. M. Bove, and S. Jolly, “Progress on characterization and optimization of leaky-mode modulators for holographic video,” J. Micro. Nanolithogr. MEMS MOEMS 14(4), 041308 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

MWSCAS (1)

C. Leach, S. McLaughlin, A. Henrie, B. Haymore, and D. Smalley, “Design and fabrication of a color multiplexing LiNbO3device,” MWSCAS 2015, 1–3 (2015).

Nature (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

P. St-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

Rev. Sci. Instrum. (1)

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref] [PubMed]

Other (5)

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” Jove 109, (2016).

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, Jr., “Frequency division of color for holovideo displays using anisotropic leaky mode couplers,” in Digital Holography and Three-Dimensional Imaging (2015), paper DM2A. 2.

C. S. Tsai, Guided-wave Acousto-Optics: Interactions, Devices, and Applications (Springer Science & Business Media, 2013).

N. T. Do, J. Su, J. Yoo, A. M. Matteo, and C. S. Tsai, “High-efficiency acoustooptic guided-mode to leaky-mode conversion in proton-exchanged lithium niobate waveguides,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 1999), pp. 613–616.
[Crossref]

H. M. Traquair, An Introduction to Clinical Perimetry: With a Foreword by Norman M. Dott (H. Kimpton, 1949).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Leaky-mode modulator layouts. (a) The traditional leaky-mode modulator with end exiting light. (b) The back side emitting leaky-mode modulator. (c) Target design; transparent, holographic, near-eye display.
Fig. 2
Fig. 2 The traditional method to use acousto-optic modulators (AOM) for holographic video displays. (A) The AOM is projected through a telescopic magnification, which is scanned across the display aperture. (B) The number of stereoscopic views is dependent upon overall angular output. (C) In fully computed holography, the point-spread function (PSF) dictates resolution parameters of the display.
Fig. 3
Fig. 3 The k-map output of the end-exiting leaky-mode modulator (a) and the back side output layout (b).
Fig. 4
Fig. 4 The fabrication process of the surface relief grating is described. (a) Resist is spun on the sample, (b) exposed, (c) developed, (d) nickel is deposited, (e) the nickel on the resist is lifted off, (f) devices are etched in an RIE, (g) device after etching, and (h) the nickel is etched off. (i) The completed output coupler, attached to an active device.
Fig. 5
Fig. 5 Measured output for the end-exiting modulator (left) and the back-exiting device (right). Data for the back-exiting device was corrected for output aperture width.
Fig. 6
Fig. 6 The test setup for gathering data from the back-exiting modulator. The device was placed in view of the camera, and the camera was focused to the plane of the device, 4 feet, and ten feet beyond the device to the virtual focus at each depth (a). Images from each distance are shown (b), with a breakout to show detail of the point spread function (c). For a video of the above test, see Visualization 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N= L V s δf .
L= t sin(Δθ) .

Metrics