Abstract

In this paper, an aberration correction algorithm for wavefront sensorless adaptive optics system is presented, which is based on the approximately linear relation between the mean square of the aberration gradients and the second moment of far-field intensity distribution. To demonstrate algorithm’s performance, an experiment system of aberration corrections for Fresnel zone plates imaging is set up. The correction results show the excellent performance of this method in correction speed, and correction capability. Comparing with conventional stochastic parallel gradient descent (SPGD) algorithm, the correction speed with this method is improved about four times for the similar correction effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront sensorless adaptive optics: a general model-based approach

Huang Linhai and Changhui Rao
Opt. Express 19(1) 371-379 (2011)

Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects

Huizhen Yang, Oleg Soloviev, and Michel Verhaegen
Opt. Express 23(19) 24587-24601 (2015)

Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique

Dan Yue, Haitao Nie, Ye Li, and Changsheng Ying
Appl. Opt. 57(7) 1650-1656 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).
  2. Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
    [Crossref]
  3. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
    [Crossref] [PubMed]
  4. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
    [Crossref] [PubMed]
  5. L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).
  6. K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).
  7. Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).
  8. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [Crossref] [PubMed]
  9. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
    [Crossref]
  10. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [Crossref] [PubMed]
  11. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wave front phase-distortion correction,” Opt. Soc. Am. A. 15(11), 2745–2758 (1998).
    [Crossref]
  12. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31(7), 939–941 (2006).
    [Crossref] [PubMed]
  13. P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
    [Crossref] [PubMed]
  14. Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensorless adaptive optics based on the trust region method,” Opt. Lett. 40(7), 1235–1237 (2015).
    [Crossref] [PubMed]
  15. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
    [Crossref] [PubMed]
  16. M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14(4), 1339–1352 (2006).
    [Crossref] [PubMed]
  17. H. Linhai and C. Rao, “Wavefront sensorless adaptive optics: a general model-based approach,” Opt. Express 19(1), 371–379 (2011).
    [Crossref] [PubMed]
  18. L. H. Huang, “Coherent beam combination using a general model-based method,” Chin. Phys. Lett. 31(9), 094205 (2014).
    [Crossref]
  19. H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23(19), 24587–24601 (2015).
    [Crossref] [PubMed]
  20. H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).
  21. L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
    [Crossref]
  22. R. Hansen, “Developing lightweight optics for space,” Sci. Technol. Rev. 1, 20–23 (2013).

2015 (4)

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensorless adaptive optics based on the trust region method,” Opt. Lett. 40(7), 1235–1237 (2015).
[Crossref] [PubMed]

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23(19), 24587–24601 (2015).
[Crossref] [PubMed]

H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).

2014 (2)

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

L. H. Huang, “Coherent beam combination using a general model-based method,” Chin. Phys. Lett. 31(9), 094205 (2014).
[Crossref]

2013 (1)

R. Hansen, “Developing lightweight optics for space,” Sci. Technol. Rev. 1, 20–23 (2013).

2011 (1)

2009 (1)

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

2007 (3)

2006 (2)

2004 (2)

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

2003 (1)

2002 (2)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

2000 (1)

1998 (1)

M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wave front phase-distortion correction,” Opt. Soc. Am. A. 15(11), 2745–2758 (1998).
[Crossref]

1997 (1)

Adler, J.

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

Ao, M.

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

Berdeu, A.

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

Booth, M.

Booth, M. J.

Burns, D.

Cao, J. T.

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Carhart, G. W.

Clark, R. L.

K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).

Cole, D. G.

K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).

Duan, H.

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Fan, M. W.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Feng, J. F.

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Girkin, J.

Guan, C. L.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Hansen, R.

R. Hansen, “Developing lightweight optics for space,” Sci. Technol. Rev. 1, 20–23 (2013).

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

Hu, Y. Y.

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Huang, L. H.

L. H. Huang, “Coherent beam combination using a general model-based method,” Chin. Phys. Lett. 31(9), 094205 (2014).
[Crossref]

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Jia, J.

Jiang, W.

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
[Crossref] [PubMed]

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Jiang, W. H.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Jiao, S.

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Koechlin, L.

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

Li, E. D.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Li, X. Y.

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Li, Z. K.

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Ling, N.

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Linhai, H.

Lipson, S. G.

Liu, W.

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Liu, Y.

Marsh, P.

Mourou, G.

Ning, L.

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

Padgett, M. J.

K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).

Raksasataya, T.

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

Rao, C.

Rao, C. H.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Rao, X. J.

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Ribak, E. N.

Ricklin, J. C.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

Shi, N. P.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Sivokon, V. P.

M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wave front phase-distortion correction,” Opt. Soc. Am. A. 15(11), 2745–2758 (1998).
[Crossref]

Soloviev, O.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

Vdovin, G.

Verhaegen, M.

Vorontsov, M. A.

M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wave front phase-distortion correction,” Opt. Soc. Am. A. 15(11), 2745–2758 (1998).
[Crossref]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
[Crossref] [PubMed]

Wang, C.

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Wang, M.

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

Wu, J.

H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).

Wulff, K. D.

K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).

Xu, B.

Xu, H.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Yadallee, M.

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

Yang, H.

H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23(19), 24587–24601 (2015).
[Crossref] [PubMed]

Yang, P.

Yang, Q.

Yang, Z.

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Yang, Z. P.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Zhang, X. J.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Zhang, Y.

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Zhang, Y. D.

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Zhang, Z.

H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).

Zhao, J.

Zhao, X. H.

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Zommer, S.

Acta Opt. Sin. (1)

L. Ning, Y. D. Zhang, X. J. Rao, X. Y. Li, C. Wang, Y. Y. Hu, and W. H. Jiang, “A small adaptive optical imaging system for cells of living human retina,” Acta Opt. Sin. 24(9), 1153–1158 (2004).

Astrophys. Space Sci. (1)

L. Koechlin, M. Yadallee, T. Raksasataya, and A. Berdeu, “New progress on the Fresnel imager for UV space astronomy,” Astrophys. Space Sci. 2014(1), 147–153 (2014).
[Crossref]

Chin. J. Lasers (1)

W. H. Jiang, Z. P. Yang, C. L. Guan, X. J. Zhang, C. H. Rao, Y. D. Zhang, E. D. Li, H. Xu, L. H. Huang, M. W. Fan, and N. P. Shi, “New progress on adaptive optics in inertial confinement fusion facility,” Chin. J. Lasers 36(7), 1226–1234 (2009).

Chin. Phys. Lett. (1)

L. H. Huang, “Coherent beam combination using a general model-based method,” Chin. Phys. Lett. 31(9), 094205 (2014).
[Crossref]

Int. J. Opt. (1)

H. Yang, Z. Zhang, and J. Wu, “Performance comparison of wavefront -sensorless adaptive optics systems by using of the focal plane,” Int. J. Opt. 2015(2015), 1–8 (2015).

J. Microsc. (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(3), 145–150 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Soc. Am. A. (1)

M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wave front phase-distortion correction,” Opt. Soc. Am. A. 15(11), 2745–2758 (1998).
[Crossref]

Proc. SPIE (3)

K. D. Wulff, D. G. Cole, R. L. Clark, and M. J. Padgett, “Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor,” Proc. SPIE 6236, 63262Y1 (2007).

Z. K. Li, J. T. Cao, W. Liu, J. F. Feng, and X. H. Zhao, “Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication,” Proc. SPIE 9521, 141–146 (2015).

Y. Zhang, N. Ling, Z. Yang, H. Duan, S. Jiao, and W. Jiang, “An adaptive Optical System for ICF Application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Sci. Technol. Rev. (1)

R. Hansen, “Developing lightweight optics for space,” Sci. Technol. Rev. 1, 20–23 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The schematic of WFSless AO system. The light is depicted as dot line. The control loop is shown as solid line.
Fig. 2
Fig. 2 The correction timing of the previous method in [17]: a correction cycle needs N + 1 measurements for N aberration modes correction; The aberration frozen time window is sized about (N + 1)T, and the correction delay is about NT.
Fig. 3
Fig. 3 The MDS fluctuation in real system
Fig. 4
Fig. 4 Aberration modes: (a) 33 Zernike modes (3-35); (b) 33 reconstructed modes
Fig. 5
Fig. 5 The inverse matrixes K 1 and L 1 of the correlation matrixes of Zernike and new aberration modes’ gradients: (a) 33 Zernike modes (3-35); (b) 33 new aberration modes.
Fig. 6
Fig. 6 The correction timing of synchronous correction: a correction cycle for N aberration modes needs 2N measurements, The aberration frozen time window is sized about 2T, and the correction delay is about T.
Fig. 7
Fig. 7 The experimental system for correcting aberration of the FZP imaging
Fig. 8
Fig. 8 The focal plane intensity distribution: (a) The intensity with aberration; (b) The intensity corrected by SPGD based on modes; (c) The intensity corrected by SPGD based on voltages; (d) The intensity corrected by AOG. The corresponding focal spots are shown in (e), (f), (g), and (h) in sequence.
Fig. 9
Fig. 9 The MTF curves of FZP imaging system. The curve represented by legend “aog” is the result of AOG algorithm. The “spgdm” stands for the result of SPGD algorithm based on modes. The “spgdv” indicates the result of SPGD method based on voltages. The “original” is the curve without correction (only in Fig. 9).The same legends are adopted in following figure.
Fig. 10
Fig. 10 The secondary moment of the focal spot
Fig. 11
Fig. 11 The efficient radius of the focal spot
Fig. 12
Fig. 12 The image sharpness of the focal spot

Tables (2)

Tables Icon

Table 1 The maximum value and FWHM of the far-field intensity

Tables Icon

Table 2 The convergence characteristics of different algorithms

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϕ(x,y)= i=1 M β i F i (x,y)
ψ(x,y)= i=1 N p i F i (x,y)
SM= S 1 { S [ ϕ(x,y) x ] 2 dxdy+ S [ ϕ(x,y) y ] 2 dxdy }
MDS= I( x 1 , y 1 ) [ 1 ( x 1 2 + y 1 2 ) R 2 ]d x 1 d y 1 I( x 1 , y 1 )d x 1 d y 1 = I( x 1 , y 1 ) [ 1 r 2 R 2 ]d x 1 d y 1 I( x 1 , y 1 )d x 1 d y 1
SM C 0 (1MDS)
w i =S M i S M 0 = S 1 S 2α[ F i (x,y) x ϕ(x,y) x + F i (x,y) y ϕ(x,y) y ]dxdy + S 1 S α 2 { [ F i (x,y) x ] 2 + [ F i (x,y) y ] 2 }dxdy
w i =S M i S M 0 C 0 (MD S 0 MD S i )= C 0 m i (i=1,2M)
β= K 1 (W α 2 K M ) 2α K 1 ( C 0 ΔM α 2 K M ) 2α
v=C zv β
K=( K 11 K 12 K 1N K 1M K 21 K 22 K 2N K 2M K N1 K N2 K NN K MN )
K i,j = S 1 S F i (x,y) x F j (x,y) x dxdy+ S 1 S F i (x,y) y F j (x,y) y dxdy
ϕ(x,y)= V N F N =( V N C N )( C N 1 F N )
ψ(x,y)= P N F N =( P N C N )( C N 1 F N )
L= C N 1 K ( C N 1 ) T
G N (x,y)= C N 1 F N
L=( l 1,1 0 0 0 l 2,2 0 0 0 0 0 l N,N )
l i,j = s 1 s G i (x,y) x G j (x,y) x dxdy+ s 1 s G i (x,y) y G j (x,y) y dxdy
w i =S M i S M 0 = S 1 S 2α[ G i (x,y) x ϕ(x,y) x + G i (x,y) y ϕ(x,y) y ]dxdy + S 1 S α 2 { [ G i (x,y) x ] 2 + [ G i (x,y) y ] 2 }dxdy
( C 0 ΔM α 2 K m ) 2α = 1 2α ( C 0 m 1 α 2 K 11 C 0 m 2 α 2 K 22 C 0 m N α 2 K NN )
( β 1 β 2 β N ) 1 2α ( K ' 1,1 K ' 12 K ' 1N K ' 21 K ' 2,2 K ' 2N K ' N1 K ' N2 K ' N,N )( C 0 m 1 α 2 K 11 C 0 m 2 α 2 K 22 C 0 m N α 2 K NN )
β i = 1 2α ( K ' i1 , K ' i2 K ' iN )( C 0 m 1 α 2 K 11 C 0 m 2 α 2 K 22 C 0 m N α 2 K NN )
β i = 1 2α K ' ii ( C 0 m i α 2 K ii )
β i l ii 1 ( C 0 m i α 2 l ii ) 2α
R 0 = s (x x 0 ) 2 + (y y 0 ) 2 I(x,y)dxdy s I(x,y)dxdy
x 0 = s x.I(x,y)dxdy s I(x,y)dxdy , y 0 = s y.I(x,y)dxdy s I(x,y)dxdy
J= s I (x,y) 2 dxdy ( s I(x,y)dxdy ) 2

Metrics