Abstract

We present a mode-locked holmium-doped all-fiber soliton laser operating in the 2052 nm wavelength range. The ultrashort pulse oscillator is simultaneously self-providing 1950-nm radiation for efficient in-band pumping in a subsequent thulium-/holmium-doped fiber tandem amplifier. More than 76 nJ-pulses for Ho:YLF or Ho:YVO4 amplifier seeding have been achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid mode locking of an all-fiber holmium laser

Serafima A. Filatova, Vladimir A. Kamynin, Natalia R. Arutyunyan, Anatoly S. Pozharov, Anton I. Trikshev, Irina V. Zhluktova, Igor O. Zolotovskii, Elena D. Obraztsova, and Vladimir B. Tsvetkov
J. Opt. Soc. Am. B 35(12) 3122-3125 (2018)

1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser

Fangzhou Tan, Hongxing Shi, Ruoyu Sun, Peng Wang, and Pu Wang
Opt. Express 24(20) 22461-22468 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  2. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patternd GaAs pumped by a fiber laser,” Opt. Express 14(10), 4439–4444 (2006).
    [Crossref] [PubMed]
  3. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.
  4. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
    [Crossref] [PubMed]
  5. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
    [Crossref] [PubMed]
  6. G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24(6), 6156–6161 (2016).
    [Crossref] [PubMed]
  7. J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).
  8. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser,” Opt. Lett. 37(6), 1014–1016 (2012).
    [Crossref] [PubMed]
  9. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [Crossref] [PubMed]
  10. Y. Nomura and T. Fuji, “Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator,” Opt. Express 22(10), 12461–12466 (2014).
    [Crossref] [PubMed]
  11. J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41(11), 2592–2595 (2016).
    [Crossref] [PubMed]
  12. N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.
  13. S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
    [Crossref]
  14. P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(12), 6859–6862 (2014).
    [Crossref] [PubMed]
  15. A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
    [Crossref]
  16. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
    [Crossref]
  17. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  18. Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-μm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett. 22(22), 1656–1658 (2010).
  19. R. Gumenyuk, I. Vartianen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed 2 μm thulium/holmium fiber laser,” Opt. Lett. 36(5), 609–611 (2011).
    [Crossref] [PubMed]
  20. R. Kadel and B. Washburn, “All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,” Appl. Opt. 51(27), 6465–6470 (2012).
    [Crossref] [PubMed]
  21. M. Yu Koptev, E. A. Anashkina, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Two-color optically synchronized ultrashort pulses from a TmYb-co-doped fiber amplifier,” Opt. Lett. 39(7), 2008–2011 (2014).
    [Crossref] [PubMed]
  22. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. of Sel. Topics in Quantum Electron. 7(4), 518–524 (2001).
    [Crossref]
  23. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  24. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
    [Crossref] [PubMed]
  25. F. Adlerand and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett. 37(9), 1400–1402 (2012).
    [Crossref]
  26. H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 μm Thulium/Holmium fiber frequency comb at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21(25), 31390–31394 (2013).
    [Crossref]
  27. N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode-locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
    [Crossref]
  28. K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. Villas-Boas Grimm, M. Helm, K. Biermann, and H. Künzel, “Passive mode-locked Tm, Ho:YAG laser at 2 μm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
    [Crossref] [PubMed]
  29. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Somalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
  30. J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.
  31. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref]
  32. P. Malevich, G. Andriukaitas, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališaukas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and B. P. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2748 (2013).
    [Crossref] [PubMed]
  33. M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.
  34. K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.
  35. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
    [Crossref] [PubMed]
  36. A. Dergachev, “45-dB, compact, single-frequency, 2-μm amplifier,” FILAS 2012, paper FTh4A.2.
  37. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  38. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
    [Crossref]
  39. S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
    [Crossref]
  40. Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
    [Crossref]
  41. P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
    [Crossref]
  42. V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.
  43. URL: http://www.fiberdesk.com
  44. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]

2016 (6)

G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24(6), 6156–6161 (2016).
[Crossref] [PubMed]

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41(11), 2592–2595 (2016).
[Crossref] [PubMed]

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref] [PubMed]

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

2014 (5)

2013 (4)

2012 (7)

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
[Crossref] [PubMed]

F. Adlerand and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett. 37(9), 1400–1402 (2012).
[Crossref]

R. Kadel and B. Washburn, “All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,” Appl. Opt. 51(27), 6465–6470 (2012).
[Crossref] [PubMed]

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser,” Opt. Lett. 37(6), 1014–1016 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2009 (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

2007 (1)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

2006 (1)

2005 (1)

2002 (1)

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. of Sel. Topics in Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

1999 (1)

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Abramski, K.

Abramski, K. M.

Adlerand, F.

Agnesi, A.

Ališaukas, S.

Anashkina, E. A.

Andrianov, A. V.

Andriukaitas, G.

Baltuška, A.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
[Crossref]

Bauer, D.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Biegert, J.

Biermann, K.

Bliss, D.

Bransley, C.

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

Brida, D.

Bromberger, H.

Bugar, I.

N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.

Byer, R. L.

Cankaya, H.

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Carter, A.

Chamorovski, A. Y.

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, K. P.

Chen, T.

Chua, C. F.

Clarkson, W. A.

Coluccelli, N.

Cousin, S. L.

Dekorsy, T.

Demirbas, U.

Dergachev, A.

A. Dergachev, “45-dB, compact, single-frequency, 2-μm amplifier,” FILAS 2012, paper FTh4A.2.

Di, J.

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
[Crossref]

Di Lieto, A.

Diddams, S. A.

Dominiak-Dzik, G.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

Dubinskii, M.

Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
[Crossref]

Dvoyrin, V.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

Engelbrecht, M.

Fang, Q.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-μm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett. 22(22), 1656–1658 (2010).

Fehrenbacher, D.

Fejer, M. M.

Fermann, M.

Fermann, M. E.

Fernández, A.

Filatova, S. A.

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

Fleischman, Z. D.

Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
[Crossref]

Flöry, T.

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.

Fuji, T.

Galzerano, G.

Geng, J.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Golab, S.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. of Sel. Topics in Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Griebner, U.

Gröbmeyer, S.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Grosse-Wortmann, U.

Guina, M.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Somalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Lett. 39(24), 6859–6862 (2014).

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Gumenyuk, R.

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Härkönen, A.

Harris, J. S.

Hartl, I.

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(12), 6859–6862 (2014).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Hasan, T.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Haub, J.

Haxsen, F.

Heberle, A. P.

Helm, M.

Hemmer, M.

Hemming, A.

Holzwarth, R.

Honzatko, P.

Hoogland, H.

Hu, G.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Imeshev, G.

Jackson, S. D.

Jelínek, M.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.

Jelínková, H.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.

Jiang, J.

Jiang, S.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Jiang, Z.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Kaczmarek, P.

Kadel, R.

Kamynin, V. A.

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

Kärtner, F. X.

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Kasik, I.

Kieu, K.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-μm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett. 22(22), 1656–1658 (2010).

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Kim, A. V.

King, T. A.

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.

Kracht, D.

Krauss, G.

Krausz, F.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kubecek, V.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.

Kumkar, S.

Künzel, H.

Kurkov, A.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

Kurkov, A. S.

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lagatsky, A.

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.

Laporta, P.

Leindecker, N.

Leitenstorfer, A.

Li, P.

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(12), 6859–6862 (2014).
[Crossref] [PubMed]

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Liang, X.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Lin, S.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Loiko, P.

Lukasiewicz, T.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

Luo, T.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Lynch, C.

Mak, K. F.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Malevich, P.

Marakulin, A. V.

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Marandi, A.

Martynkien, T.

Mateos, X.

Merkle, L. D.

Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
[Crossref]

Morgner, U.

Murari, K.

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Muravyev, S. V.

Neuhaus, J.

Neumann, J.

Newburgh, G. A.

Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
[Crossref]

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. of Sel. Topics in Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Nomura, Y.

Okhotnikov, O. G.

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

R. Gumenyuk, I. Vartianen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed 2 μm thulium/holmium fiber laser,” Opt. Lett. 36(5), 609–611 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Ouyang, D.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Pasternak, I.

Pawliszewska, M.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Pervak, V.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Peterka, P.

Petrov, V.

Peyghambarian, N.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-μm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett. 22(22), 1656–1658 (2010).

Phua, B. P.

Pronin, O.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Przewolka, A.

Pugžlys, A.

Qin, Z.

Ruan, S.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Ruehl, A.

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(12), 6859–6862 (2014).
[Crossref] [PubMed]

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

Ruf, H.

Ryba-Romanowski, W.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

Sanchez, D.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.

Sánchez, D.

Schäfer, H.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.

Schunemann, P. G.

Sibbett, W.

Simakov, N.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Sobon, G.

Solarz, P.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

Somalainen, S.

Sorokin, E.

N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

Sorokina, I.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

Sorokina, I. T.

N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.

Sotor, J.

Strupinski, W.

Sun, Z.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Sutter, D.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Tan, L. H.

Thai, A.

Tolstik, N.

N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

Tonelli, M.

Trikshev, A. I.

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

Tsvetkov, V. B.

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

Tuovinen, H.

Vartianen, I.

Verhoef, A. J.

Villas-Boas Grimm, C.

Vodopyanov, K. L.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
[Crossref]

Wandt, D.

Wang, J.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Wang, Q.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

Wang, Y.

Washburn, B.

Wienke, A.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Wu, X.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Wunram, M.

Xie, G.

Xu, X.

Yan, P.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Yang, K.

Yu, X.

Yu Koptev, M.

Zhang, B.

Zhang, J.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

Zheng, Z.

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Zhluktova, I. V.

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

Appl. Opt. (1)

IEEE J. of Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+ and Ho3+,” IEEE J. of Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. of Sel. Topics in Quantum Electron. (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. of Sel. Topics in Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-Codoped Fiber Laser at 2.06 μm,” IEEE Photon. Technol. Lett. 23(11), 682–684 (2011).
[Crossref]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-μm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett. 22(22), 1656–1658 (2010).

IEEE Photonics Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. of Alloys and Compounds (1)

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, and W. Ryba-Romanowski, “Optical properties of YVO4 crystals singly doped with Er3+, Ho3+, Tm3+,” J. of Alloys and Compounds 341(1), 165–169 (2002).
[Crossref]

J. of Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. of Appl. Phys. 83(15), 2772–2787 (1998).
[Crossref]

Laser Phys. Lett. (2)

S. A. Filatova, V. A. Kamynin, I. V. Zhluktova, A. I. Trikshev, and V. B. Tsvetkov, “All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser,” Laser Phys. Lett. 13(11), 115103 (2016).
[Crossref]

A. Y. Chamorovski, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon naotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Laser Phys. Letters (1)

P. Li, A. Ruehl, C. Bransley, and I. Hartl, “Low Noise, tunable Ho:fiber Soliton Oscillator for Ho:YLF Amplifier Seeding,” Laser Phys. Letters 13(6), 065104 (2016).
[Crossref]

Opt. Express (9)

G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24(6), 6156–6161 (2016).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patternd GaAs pumped by a fiber laser,” Opt. Express 14(10), 4439–4444 (2006).
[Crossref] [PubMed]

Y. Nomura and T. Fuji, “Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator,” Opt. Express 22(10), 12461–12466 (2014).
[Crossref] [PubMed]

G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 μm Thulium/Holmium fiber frequency comb at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21(25), 31390–31394 (2013).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref]

K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. Villas-Boas Grimm, M. Helm, K. Biermann, and H. Künzel, “Passive mode-locked Tm, Ho:YAG laser at 2 μm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
[Crossref] [PubMed]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref] [PubMed]

Opt. Lett. (12)

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Somalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Lett. 39(24), 6859–6862 (2014).

P. Malevich, G. Andriukaitas, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališaukas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and B. P. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2748 (2013).
[Crossref] [PubMed]

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode-locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
[Crossref]

M. Yu Koptev, E. A. Anashkina, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Two-color optically synchronized ultrashort pulses from a TmYb-co-doped fiber amplifier,” Opt. Lett. 39(7), 2008–2011 (2014).
[Crossref] [PubMed]

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
[Crossref] [PubMed]

F. Adlerand and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett. 37(9), 1400–1402 (2012).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41(11), 2592–2595 (2016).
[Crossref] [PubMed]

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser,” Opt. Lett. 37(6), 1014–1016 (2012).
[Crossref] [PubMed]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
[Crossref] [PubMed]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(12), 6859–6862 (2014).
[Crossref] [PubMed]

R. Gumenyuk, I. Vartianen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed 2 μm thulium/holmium fiber laser,” Opt. Lett. 36(5), 609–611 (2011).
[Crossref] [PubMed]

Opt. Mat. Express (1)

Z. D. Fleischman, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Spectroscopic analysis of efficient laser material Ho3+:YVO4,” Opt. Mat. Express 3(8), 1176–1186 (2013).
[Crossref]

Sci. Rep. (1)

J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, and T. Hasan, “152 fs nanotube-mode-locked thulium-doped all-fiber laser,” Sci. Rep. 6, 1–7 (2016).

Other (8)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), 471–500.

N. Tolstik, E. Sorokin, I. Bugar, and I. T. Sorokina, “Compact diode-pumped dispersion-managed SESAM-mode-locked Ho:fiber laser,” in Mid-Infrared Coherent Sources (2016), paper MM6C.4.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínková, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm multi-mJ, cryogenic Ho:YLF CPA,” in CLEO:2014, paper SM1F.3.

K. Murari, H. Cankaya, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “1.2 mJ, 1 kHz, ps-pulses at 2.05 μm from a Ho:fiber/Ho:YLF laser,” in Europhoton Conference (2014), paper ThD-T1-O-05.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm,” in CLEO: Science and Innovations, Optical Society of America2017, paper CA.5.5.

A. Dergachev, “45-dB, compact, single-frequency, 2-μm amplifier,” FILAS 2012, paper FTh4A.2.

V. Dvoyrin, N. Tolstik, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 μm,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), paper CJ.7.4.

URL: http://www.fiberdesk.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic setup of the HDF oscillator and amplifier. SESAM: Semiconductor saturable absorber mirror; WDM: wavelength division multiplexer; HDF: Holmium-doped fiber; TDFA: Thulium-doped fiber laser amplifier; TDF: Thulium-doped fiber; MMPC: Multimode pump combiner; LD: Laser diode; PC: Polarization controller; SM2K: Single mode passive fiber (SM2000).
Fig. 2
Fig. 2 Experimental results for the HDF oscillator: (a) fundamental beat note with resolution bandwidth of 10 Hz, inset: radio frequency comb and (b) optical output spectrum with signal at 2052 nm and pump at 1950 nm (black line) as well as the transmission of the WDM (red dashed line).
Fig. 3
Fig. 3 Experimental results for the HDF oscillator: (a) measured (black continuous line) and simulated (red dashed line) optical pulse spectrum, inset: Fourier-limited and simulated pulse, (b) oscilloscope trace.
Fig. 4
Fig. 4 AC traces measured with an autocorrelator: (a) measured behind the thulium fiber and (b) measured at angle cleaved holmium-doped fiber output.
Fig. 5
Fig. 5 Experimental results for the Tm-/Ho-doped fiber tandem amplifier: (a) optical spectrum at different pulse energies and (b) amplified signal output power vs. absorbed pump power.
Fig. 6
Fig. 6 Measured long-term stability power trend curve. The area embedded by the red dashed lines is the period where the laboratory’s air condition has been switched off resulting in about 5°C increased ambient temperature. The grey dashed lines represent the measured maximum and minimum value, respectively.

Metrics