Abstract

Interference lithography based on surface plasmon polaritons has been proven to break the diffraction limit and deliver the high imaging resolution. However, most previously reported studies suffer from the inflexible pattern pitch for a certain structure ascribed to fixed excitation mode, which limits the applications in micro-/nano- fabrications. In this work, the large area deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons (BPPs) is proposed. By simply tuning the incident angle, the spatial frequencies of the selected BPPs modes squeezed through hyperbolic metamaterial changes correspondingly. As a result, the pitch of the interference pattern is continuously altered. The results demonstrate that one-dimensional and two-dimensional periodic patterns with pitch resolution ranging from 45 nm (~λ/10) to 115 nm (~λ/4) can be generated under 436 nm illumination. Additionally, the general method of designing such an interference lithography system is also discussed, which can be used for nanoscale fabrication in this fashion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons

Hongchao Liu, Yunfei Luo, Weijie Kong, Kaipeng Liu, Wenjuan Du, Chengwei Zhao, Ping Gao, Zeyu Zhao, Changtao Wang, Mingbo Pu, and Xiangang Luo
Opt. Mater. Express 8(2) 199-209 (2018)

Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity

Weihao Ge, Chinhua Wang, Yinfei Xue, Bing Cao, Baoshun Zhang, and Ke Xu
Opt. Express 19(7) 6714-6723 (2011)

Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference

Kandammathe Valiyaveedu Sreekanth, Jeun Kee Chua, and Vadakke Matham Murukeshan
Appl. Opt. 49(35) 6710-6717 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [Crossref] [PubMed]
  2. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
    [Crossref]
  3. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  4. M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
    [Crossref]
  5. I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
    [Crossref]
  6. J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
    [Crossref]
  7. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
    [Crossref]
  8. K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
    [Crossref]
  9. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  10. C. H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
    [Crossref] [PubMed]
  11. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006).
    [Crossref] [PubMed]
  12. F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
    [Crossref]
  13. K. V. Sreekanth and V. M. Murukeshan, “Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning,” J. Opt. Soc. Am. A 27(1), 95–99 (2010).
    [Crossref] [PubMed]
  14. P. Mehrotra, C. A. Mack, and R. J. Blaikie, “A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures,” Opt. Express 21(11), 13710–13725 (2013).
    [Crossref] [PubMed]
  15. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  16. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  17. X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
    [Crossref]
  18. W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
    [Crossref]
  19. J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
    [Crossref]
  20. J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
    [Crossref] [PubMed]
  21. X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
    [Crossref] [PubMed]
  22. T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
    [Crossref]
  23. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  24. B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [Crossref]
  25. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
    [Crossref]
  26. G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
    [Crossref]
  27. C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
    [PubMed]
  28. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
    [Crossref] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  30. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  31. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  32. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046618 (2006).
    [Crossref] [PubMed]
  33. K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
    [Crossref] [PubMed]
  34. Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
    [Crossref]

2016 (2)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

2015 (5)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

2013 (4)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
[Crossref] [PubMed]

P. Mehrotra, C. A. Mack, and R. J. Blaikie, “A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures,” Opt. Express 21(11), 13710–13725 (2013).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

2011 (1)

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

2010 (2)

2009 (1)

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

2008 (2)

C. H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

2007 (2)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (4)

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046618 (2006).
[Crossref] [PubMed]

X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (2)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

2003 (1)

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

2001 (2)

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

1999 (1)

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

1981 (1)

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Atoda, N.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Blaikie, R. J.

Braun, P. V.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

Buchel, D.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Chang, C. H.

Chen, K.

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

Chen, X.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Chen, Y.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

Chiang, H.-P.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Cho, E.

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Crespi, V. H.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
[Crossref] [PubMed]

Divliansky, I. B.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

Dong, J.

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Dou, F.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Du, J.

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Fukaya, T.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

Gao, P.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Gaylord, T. K.

Guo, L. J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Guo, X.

Guo, Y.

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Harned, N.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Heilmann, R. K.

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hinsberg, W. D.

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

Hoffnagle, J. A.

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

Holliday, K. S.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

Houle, F. A.

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

Hsu, C. C.

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Jin, P.

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Kang, G.

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Kemp, K.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

Lai, N. D.

Lee, C. S.

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Liang, G.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

Liang, W. P.

Lin, C. H.

Lin, C.-S.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Lin, J. H.

Lin, W. C.

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Liu, H.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Liu, H.-W.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Liu, J.

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Liu, K.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Liu, L.

Liu, P.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Liu, W.

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

Liu, Z.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Lu, N. H.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Luo, X.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, Y.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Ma, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Mack, C. A.

Mayer, T. S.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

Mehrotra, P.

Miyake, M.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

Moharam, M. G.

Murukeshan, V. M.

Pendry, J. B.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Podolskiy, V. A.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Sanchez, M. I.

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

Schattenburg, M. L.

Schilling, J.

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046618 (2006).
[Crossref] [PubMed]

Shinbori, S.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
[Crossref] [PubMed]

K. V. Sreekanth and V. M. Murukeshan, “Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning,” J. Opt. Soc. Am. A 27(1), 95–99 (2010).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tominaga, J.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

Tsai, D.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Tsai, D. P.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

Wagner, C.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Wang, C.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Wang, Y.

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Wen, C. Y.

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

Wiltzius, P.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

Wood, B.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Wurm, S.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

Xie, J.

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yang, F.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Yao, J.

Yao, N.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Yu, C.-F.

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Zhang, C.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zhao, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhao, P.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Zhao, Q.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

Zhao, X.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Zhao, Y.

Zhao, Z.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Zhou, J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

ACS Nano (1)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Adv. Mater. (1)

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three ‐ Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21(29), 3012–3015 (2009).
[Crossref]

Adv. Optical Mater. (1)

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Optical Mater. 3(9), 1248–1256 (2015).
[Crossref]

Appl. Phys. Express (1)

F. Yang, X. Chen, E. Cho, C. S. Lee, P. Jin, and L. J. Guo, “Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure,” Appl. Phys. Express 8(6), 062004 (2015).
[Crossref]

Appl. Phys. Lett. (5)

Y. Xiong, Z. Liu, and X. Zhang, “Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

W. Liu, C. Y. Wen, K. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[Crossref]

C. R. Phys. (1)

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

J. Appl. Phys. (1)

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

J. A. Hoffnagle, W. D. Hinsberg, M. I. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17(6), 3306–3309 (1999).
[Crossref]

Nano Lett. (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Opt. Commun. (1)

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly Confined Optical Modes in Nanoscale Metal-Dielectric Multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046618 (2006).
[Crossref] [PubMed]

Scanning (1)

C.-S. Lin, C.-F. Yu, H.-W. Liu, N. H. Lu, H.-P. Chiang, and D. P. Tsai, “Near-field imaging of the interactions of evanescent fields,” Scanning 26(5), I47–I51 (2004).
[PubMed]

Sci. China Phys. Mech. Astron. (1)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Sci. Rep. (2)

J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, “Pushing the resolution of photolithography down to 15nm by surface plasmon interference,” Sci. Rep. 4(1), 5618 (2015).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3(1), 3291 (2013).
[Crossref] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of pattern period tunable BPPs interference lithography.
Fig. 2
Fig. 2 (a) 3D plot of EFC surface (b) and OTF respectively calculated by EMT and RCWA for HMM system defined in Fig. 1. OTF plots in logarithm scale as function of (c) unit thickness h-pair, (d) the metal film thickness h-metal, (e) fill factor of metal f (f) and the dielectric film thickness h-die for 5 pairs Ag/SiO2 films.
Fig. 3
Fig. 3 (a) OTF plots in logarithm scale as function of number of SiO2/Ag (15nm/30nm) pairs. (b) Nonuniformity of the interference patterns for variant incident angles with 3, 5 and 7 units.
Fig. 4
Fig. 4 (a) OTF for 5 pairs Ag/SiO2 films with variant SiO2 thickness calculated by RCWA. (b) and (c) are real and imaginary part of kz as a function of kx calculated in Bloch theorem. (d) Amplitude transmission of different diffraction orders for variant incident angle with grating period of 190 nm (f) and of 130 nm in logarithm scale. (e) The amplitude transmission ratio of + 1st (g) and −1st diffraction order vary with incident angle corresponding to above situation.
Fig. 5
Fig. 5 RCWA simulations for OTF1 with 5 pairs Ag (30 nm)/SiO2 (35 nm) films as follows: (a) electric field intensity normalized by that of the perpendicular incident light along the horizontal lines at the middle of PR layer for variant incident angles. (b) The image contrast, numerical and theoretical pitch (c) and intensity, nonuniformity for interference fringes as function of incident angle. (d) Imaging contrast distribution in the different depth of Pr layer for different incident angles. Similarly, (e)-(f) are corresponding to OTF2 with 5 pairs Ag (30 nm)/SiO2 (15 nm) films.
Fig. 6
Fig. 6 (a) The amplitude ratio between |Ez| and |Ex| in logarithm scale for BPPs interference lithography with and without Al reflector as function of incident angles. (b) The pattern contrast corresponding to above mentioned BPPs interference lithography. (c) Electric intensity distribution of |Ex|2, |Ez|2 and |Ex|2 + |Ez|2 without Al reflector and (d) with Al reflector.
Fig. 7
Fig. 7 Schematic for periodic tunable BPPs interference lithography with 2D grating. (b) Square grating for BPPs excitation. (c) The position of diffraction light orders and optical transmission amplitude band for 5 pairs Ag (30nm) /SiO2 (35 nm) films.
Fig. 8
Fig. 8 Structure with 5 pairs Ag (30 nm)/SiO2 (35 nm) films. (a) Normalized electric field intensity distributions (3 × 3 periods) in the xy plane at 0°, (b) 40° (c) and 85°. (d) The image contrast, numerical and theoretical pitch resolution of the interference array dots for variant incident angle. The same in (e)–(h) for structure with 5 pairs Ag (30 nm)/SiO2 (15 nm).
Fig. 9
Fig. 9 Normalized electric field intensity distributions (3 × 3 periods) in the middle of the PR layer on the x-y plane for 2D array dots with period of (a) 65 × 65 nm, (b) 90 × 65 nm (c) and 115 × 65 nm in x and y direction, while under the incident light angle in x direction of 0°, 40°, and 85°, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε = f * ε m + ( 1 f ) * ε d ,
ε = ε m ε d / [ ( 1 f ) * ε m + f * ε d ] ,
k x = n k 0 sin θ + 2 π m / Λ , ( m = 0 , ± 1 , ± 2...... ) .
P u = ( λ / ( 2 ( m λ / p n sin θ ) ) ) ,
P l = ( λ / ( 2 ( m λ / p + n sin θ ) ) ) ,

Metrics