Abstract

The terahertz band is an increasingly important spectrum in a wide range of applications from bioimaging and medical diagnostics to security and wireless communications. We propose a tunable terahertz coherent radiation source based on graphene plasmon-induced transition radiation. The transition radiation in terahertz regime arises from the graphene plasmons, which are excited by a normally incident bunched electron beam. We analyze the field-intensities and spectral-angular distributions of the transition radiation with respect to Fermi energy, substrate dielectric permittivity, and electron bunch energy for both the coherent and incoherent radiation. The effect of electron bunching on the radiation pattern is discussed. The mechanism of plasmon frequency-selective transition radiation is discovered.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial

Hui Xu, Hongjian Li, Zhihui He, Zhiquan Chen, Mingfei Zheng, and Mingzhuo Zhao
Opt. Express 25(17) 20780-20790 (2017)

Surface plasmon modes in graphene wedge and groove waveguides

Penghong Liu, Xinzheng Zhang, Zenghong Ma, Wei Cai, Lei Wang, and Jingjun Xu
Opt. Express 21(26) 32432-32440 (2013)

Broadband terahertz modulators using self-gated graphene capacitors

Nurbek Kakenov, Osman Balci, Emre O. Polat, Hakan Altan, and Coskun Kocabas
J. Opt. Soc. Am. B 32(9) 1861-1866 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Phys. Rev. 92(3), 609–625 (1953).
    [Crossref]
  2. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  3. C. J. Powell and J. B. Swan, “The Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115(4), 869–875 (1959).
    [Crossref]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  6. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  7. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  8. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  9. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
    [Crossref] [PubMed]
  10. S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
    [Crossref]
  11. S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
    [Crossref]
  12. K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
    [Crossref]
  13. F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
    [Crossref] [PubMed]
  14. K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).
  15. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
    [Crossref] [PubMed]
  16. L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
    [Crossref]
  17. K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
    [Crossref]
  18. V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” J. Phys. 9, 353 (1945).
  19. G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
    [Crossref] [PubMed]
  20. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  21. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
    [Crossref] [PubMed]
  22. P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
    [PubMed]
  23. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
    [Crossref] [PubMed]
  24. G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
    [Crossref] [PubMed]

2017 (1)

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

2016 (1)

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

2015 (5)

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

2014 (1)

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

2013 (1)

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[Crossref] [PubMed]

2012 (2)

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (5)

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2009 (1)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2006 (1)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2003 (1)

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

1959 (1)

C. J. Powell and J. B. Swan, “The Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115(4), 869–875 (1959).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

1953 (1)

D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Phys. Rev. 92(3), 609–625 (1953).
[Crossref]

1945 (1)

V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” J. Phys. 9, 353 (1945).

Ang, L. K.

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Ang, Y. S.

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

Arnone, D. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Bae, M. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bennett, D.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Bobrow, L.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Bohm, D.

D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Phys. Rev. 92(3), 609–625 (1953).
[Crossref]

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

Brown, E. R.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Chen, L. M.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Chen, X. X.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Cheng, J. L.

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

Cheong, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Cho, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Chu, H. S.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Chun, S. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

Cochran, A.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Culjat, M. O.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Cundin, L. X.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Deng, Y. Q.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Dorgan, V. E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fitzgerald, A. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Frank, I.

V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” J. Phys. 9, 353 (1945).

Garciía de Abajo, F. J.

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[Crossref] [PubMed]

Ge, X. L.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Ginsburg, V.

V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” J. Phys. 9, 353 (1945).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gong, S.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Grundfest, W. S.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Grundt, J. E.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Heinz, T. F.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Hone, J.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hsieh, C. Y.

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Hu, M.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Hubschman, J. P.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Ibey, B. L.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Ilic, O.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Jimenez-Linan, M.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Joannopoulos, J. D.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kaminer, I.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kealey, C. P.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Kim, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, P.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Koh, W. S.

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

Lee, S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Lee, S. W.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Li, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Li, Y. T.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liao, G. Q.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Liu, H.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Liu, S. G.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Liu, W.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Lu, X.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Ma, J. L.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mixon, D. G.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ooi, K. J. A.

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Park, C. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Park, S. N.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Park, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Payne, J. A.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Peralta, X.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Pines, D.

D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Phys. Rev. 92(3), 609–625 (1953).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Pop, E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Powell, C. J.

C. J. Powell and J. B. Swan, “The Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115(4), 869–875 (1959).
[Crossref]

Purushotham, A. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Pye, R. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Ritchie, R. H.

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rivest, B. D.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Roach, W. P.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Roth, C. C.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Ryoo, J. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Sanderson, M.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Sheng, Z. M.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Singh, R. S.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Soljacic, M.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Swan, J. B.

C. J. Powell and J. B. Swan, “The Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115(4), 869–875 (1959).
[Crossref]

Tan, D. T. H.

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Taylor, Z. D.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Tewari, P.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wallace, V. P.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, W. M.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Wang, X.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Wei, W. Q.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

White, S.

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Wilmink, G. J.

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Wong, L. J.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

Yang, S.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Yoon, D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Yuan, X. H.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, C.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zhang, J.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Zhang, P.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhang, Y. H.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Zhang, Z.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

Zhao, T.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zhong, R.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhong, R. B.

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zhu, B. J.

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

ACS Nano (1)

F. J. Garcıía de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7(12), 11409–11419 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and R. B. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

S. Gong, T. Zhao, M. Sanderson, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, C. Zhang, and S. G. Liu, “Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime,” Appl. Phys. Lett. 106(22), 223107 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. J. A. Ooi, Y. S. Ang, J. L. Cheng, L. K. Ang, and D. T. H. Tan, “Electronic scattering of graphene plasmons in the nonlinear regime,” IEEE J. Sel. Top. Quantum Electron. 27(4), 5100206 (2017).

IEEE Trans. Plasma Sci. (1)

K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons,” IEEE Trans. Plasma Sci. 43(4), 951–956 (2015).
[Crossref]

J. Biol. Phys. (1)

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

J. Phys. (1)

V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” J. Phys. 9, 353 (1945).

Lasers Surg. Med. (1)

G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, and W. P. Roach, “In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation,” Lasers Surg. Med. 43(2), 152–163 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C. H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S. N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S. H. Chun, H. Cheong, S. W. Lee, M. H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to X-ray sources,” Nat. Photonics 10(1), 46–52 (2015).
[Crossref]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Phys. Rev. (3)

D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Phys. Rev. 92(3), 609–625 (1953).
[Crossref]

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

C. J. Powell and J. B. Swan, “The Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115(4), 869–875 (1959).
[Crossref]

Phys. Rev. Appl. (1)

K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient mid-infrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3(5), 054001 (2015).
[Crossref]

Phys. Rev. B (1)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in Graphene at Infrared Frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Phys. Rev. Lett. (2)

G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).
[Crossref] [PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface Polariton Cherenkov Light Radiation Source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Radiology (1)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz Pulsed Imaging of Human Breast Tumors,” Radiology 239(2), 533–540 (2006).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Stud. Health Technol. Inform. (1)

P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, and W. S. Grundfest, “Terahertz imaging of biological tissues,” Stud. Health Technol. Inform. 163, 653–657 (2011).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the system.

Fig. 2
Fig. 2

Electric field of TR (a) by an electron and (b) by an electron bunch at 5THz.

Fig. 3
Fig. 3

Spectral-angular distribution of (a) incoherent and (b) coherent radiation.

Fig. 4
Fig. 4

Poynting fluxes with bunch energy (a) 1keV, (b) 10keV, (c) 100keV, respectively, and (d) radiation distribution as a function of angle θ at frequency from 0.3 THz to 1.3 THz.

Fig. 5
Fig. 5

TR Poynting flux in (a) backward and (b) forward direction with varying Fermi energy (from 0.1eV to 0.3eV as inset) and bunch energy (1keV, 10keV and 100keV).

Fig. 6
Fig. 6

TR Poynting flux in (a) backward and (b) forward direction with varying dielectric constant.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 E(r,ω)+ ω 2 c 2 ε r E(r,ω)= ( ρ(r,ω) ) ε 0 ε r +iωμJ(r,ω)
ρ(r,t)=e j v j δ( r j v j t r 0 j ) , J(r,t)=e j v j δ( r j v j t r 0 j )
E 0 (Q,ω)= ie ε 0 ε r ε r ωv c 2 Q c 2 Q 2 ω 2 ε r j e i Q // r //j i Q z z j
H 0φ ( Q // ,z,ω)=ie c 2 Q // c 2 Q 2 ω 2 ε r e i Q z z j e i Q // r //j i Q z z j e φ
{ E r// I ( k // ,z,ω)=A e i k z I z e // H rφ I = ε 0 ε 1 ω k z I A e i k z I z e φ and { E r// II ( k // ,z,ω)=B e i k z II z e // H rφ II = ε 0 ε 2 ω k z II B e i k z II z e φ
{ A= A 0 j N e i Q // r / / j i Q z z j = A 0 NF( k // , Q z ) B= B 0 j N e i Q // r // j i Q z z j = B 0 NF( k // , Q z )
{ A 0 = ie c 2 k z I k // v z ε 1 [ ω ε 2 + v z k z II ε 1 + σ g k z II / ε 0 c 2 Q 2 ω 2 ε 1 ω ε 1 + v z k z II ε 1 c 2 Q 2 ω 2 ε 2 ] k z I ε 2 ω ε 0 + k z II ε 1 ω ε 0 + σ g k z I k z II B 0 = ie c 2 k z II k // v z ε 2 [ ω ε 2 v z k z I ε 2 c 2 Q 2 ω 2 ε 1 ω ε 1 v z k z I ε 2 + σ g k z I / ε 0 c 2 Q 2 ω 2 ε 2 ] k z I ε 2 ω ε 0 + k z II ε 1 ω ε 0 + σ g k z I k z II and F( k // , Q z )=exp( k // 2 σ r 2 + Q z 2 σ z 2 2 ).
F // =exp( 1 2 k // 2 σ r 2 ) and F z =exp( 1 2 Q z 2 σ z 2 ).
ε 1 k // 2 ε 1 ω 2 c 2 + ε 2 k // 2 ε 2 ω 2 c 2 =i σ g ω ε 0
σ g = e 2 E F π 2 i ω+i τ 1 = e 2 E F π 2 τ 1 +iω ω 2 + τ 2
E r// (r,ω)= 1 2π E r0// ( k // ,z,ω) j N e i Q // r //j i Q z z j e i k // r // d k // = 0 k // A 0 e i k z r z J 0 ( k // r // )NF( k // , Q z )d k //
S(r,ω)= k 2ω μ 0 [ E r// (r,ω) E r// * (r,ω)+ E rz (r,ω) E rz * (r,ω) ]
W(r,ω)= r 2 nS(r,ω)dΩdt
d 2 W(r,ω) dΩdω = r 2 nS(r,ω)= k r 2 2ω μ 0 [ E r// 2 (r,ω)+ E rz 2 (r,ω) ]
d 2 W(r,ω) dΩdω = r 2 k 2ω μ 0 [ N E 0 2 +N( N1 ) E 0 2 F 2 ]

Metrics