Abstract

Chalcogenide glasses as kind of diamagnetic magneto-optical materials have promising applications in the field of integrated optics and optical communication systems due to their excellent properties, such as easy to be processed into waveguide and temperature independence of the Verdet constants. For clarifying the influence factors following the compositional variation on Faraday effect and finding a glass with a large Verdet constant, novel pseudo-ternary chalcogenide glass system, GeS2 - In2S3 - PbI2, was prepared and investigated. The composition, wavelength and temperature dependences on the Verdet constants were systematically investigated at the wavelengths of 635, 808, 980 and 1319 nm. PbI2 was confirmed to have positive contribution to the Verdet constant and the Becquerel rule was proved to be an effective guidance for predicting the Verdet constant in chalcogenide glasses. The 60GeS2·15In2S3·25PbI2 glass was found to possess the largest Verdet constant (V = 0.215 min·G−1·cm−1, @808nm), which is great larger than that of commercial diamagnetic glasses. These glasses also possess good glass-forming ability and VIS-IR transmittance, therefore be a good candidate for next-generation integrated optical isolator and other magneto-optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of the Faraday effect in Ge-S based chalcogenide glasses via gallium and lead compositional modifications

Yantao Xu, Xusheng Xiao, Xiaoxia Cui, Fei Gao, Jian Cui, Xiaogang Liu, Haitao Guo, Jiangbo She, Gang Chen, Min Lu, and Bo Peng
Opt. Mater. Express 8(7) 1754-1761 (2018)

Fabrication of europium-doped silica optical fiber with high Verdet constant

Yi Huang, Huangchao Chen, Weilong Dong, Fufei Pang, Jianxiang Wen, Zhenyi Chen, and Tingyun Wang
Opt. Express 24(16) 18709-18717 (2016)

Third-order nonlinear optical properties of GeS2-Sb2S3-CdS chalcogenide glasses

Haitao Guo, Chaoqi Hou, Fei Gao, Aoxiang Lin, Pengfei Wang, Zhiguang Zhou, Min Lu, Wei Wei, and Bo Peng
Opt. Express 18(22) 23275-23284 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm),” Opt. Express 18(12), 12191–12196 (2010).
    [Crossref] [PubMed]
  2. C. J. Firby and A. Y. Elezzabi, “High-speed nonreciprocal magnetoplasmonic waveguide phase shifter,” Optica 2(7), 598–606 (2015).
    [Crossref]
  3. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
    [Crossref]
  4. H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
    [Crossref]
  5. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
    [Crossref] [PubMed]
  6. A. Haddadpour, V. F. Nezhad, Z. Yu, and G. Veronis, “Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides,” Opt. Lett. 41(18), 4340–4343 (2016).
    [Crossref] [PubMed]
  7. Q. Chen, Q. Ma, H. Wang, and Q. Chen, “Diamagnetic tellurite glass and fiber based magneto-optical current transducer,” Appl. Opt. 54(29), 8664–8669 (2015).
    [Crossref] [PubMed]
  8. X. Ma and S. Tao, “High-isolation optical isolator using a BiCalnVIG single crystal,” Appl. Opt. 31(21), 4122–4124 (1992).
    [Crossref] [PubMed]
  9. T. Yoshino, S. Torihata, M. Yokota, and N. Tsukada, “Faraday-effect optical current sensor with a garnet film/ring core in a transverse configuration,” Appl. Opt. 42(10), 1769–1772 (2003).
    [Crossref] [PubMed]
  10. K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
    [Crossref]
  11. B. Geist, R. Ronningen, A. Stolz, G. Bollen, and V. Kochergin, “Radiation stability of visible and near-infrared optical and magneto-optical properties of terbium gallium garnet crystals,” Appl. Opt. 54(10), 2866–2869 (2015).
    [Crossref] [PubMed]
  12. M. J. Weber, Handbook of Optical Materials (CRC, 2003), Chap. 2.
  13. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
    [Crossref]
  14. A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
    [Crossref]
  15. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
    [Crossref] [PubMed]
  16. J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
    [Crossref]
  17. A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
    [Crossref]
  18. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
    [Crossref]
  19. A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
    [Crossref]
  20. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  21. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  22. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
    [Crossref]
  23. H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
    [Crossref]
  24. F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).
  25. Test Methods of Colorless Optical Glass-Part 9: Coefficient of Optical Absorption, State Standard of the People’s Republic of China, GB/T 7962.9–2010.
  26. J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
    [Crossref]
  27. Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
    [Crossref]
  28. J. M. Weber, Handbook of Optical Materials (CRC, 2003), Section 2.7.1.
  29. H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
    [Crossref] [PubMed]
  30. T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
    [Crossref] [PubMed]
  31. J. A. Dean, Lange’s Handbook of Chemistry, 15th Ed., (McGraw-Hill Book Company, 1999), Section 4.
  32. H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
    [Crossref]
  33. N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
    [Crossref]
  34. H. Sato, M. Kawase, and M. Saito, “Temperature dependence of the Faraday effect in As-S glass fiber,” Appl. Opt. 24(15), 2300–2303 (1985).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

2013 (1)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

2012 (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

2011 (3)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (1)

2009 (1)

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

2008 (1)

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

2007 (3)

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

2006 (1)

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[Crossref]

2003 (1)

2001 (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

1998 (3)

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

1997 (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

1992 (1)

1985 (1)

1980 (1)

K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
[Crossref]

1964 (1)

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Aggarwal, I. D.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

Akao, Y.

K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
[Crossref]

Bahlmann, N.

Bi, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Bollen, G.

Borrelli, N. F.

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Boussard-pledel, C.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Bureau, B.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Chen, F.

Chen, Q.

Chu, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

Coulombier, Q.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Da, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Dai, S.

Dionne, G. F.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Dotsch, H.

Edgar, A.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Elezzabi, A. Y.

Firby, C. J.

Geist, B.

Gerhardt, R.

Giltrap, D.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Gong, Q.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Gong, Y.

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

Granzow, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Gu, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Guo, H.

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

Guth, I.

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

Haddadpour, A.

Haizheng, T.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Hammer, M.

Hertel, P.

Hirao, K.

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

Hu, J.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Huang, Y.

Jarvis, R. A.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Jiang, S.

Kanbara, H.

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

Kawase, M.

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Kochergin, V.

Lee, H. W.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Li, L.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Liu, Z.

Lucas, J.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Lukic, S.

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

Luo, B.

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Ma, Q.

Ma, X.

MacFarlane, D. R.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Madden, S.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Mao, S.

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

Marciante, J. R.

Miyazaki, Y.

K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
[Crossref]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Nasu, H.

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

Nezhad, V. F.

Ou, H.

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Petrovic, D.

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

Popkov, A. F.

Qiu, J.

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rode, A. V.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Ronningen, R.

Ross, C. A.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Ruan, Y.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Russell, P. S. J.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Saito, M.

Sanghera, J. S.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

Sato, H.

Schmidt, M. A.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Shaw, L. B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

Shun, M.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Skuban, F.

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

Stolz, A.

Sugimoto, N.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

Sun, L.

Taki, K.

K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
[Crossref]

Tanaka, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

Tang, D.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Tao, H.

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

Tao, S.

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

Torihata, S.

Tsukada, N.

Veronis, G.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Wang, H.

Wang, R.

Wang, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Wang, X.

Wang, Y.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Wei, T.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Wilkens, L.

Wondraczek, L.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Xiujian, Z.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Xu, H.

Yang, A.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yang, Z.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yokota, M.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Yoshino, T.

Yu, Z.

Zhai, Y.

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Zhang, B.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, M.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, P.

Zhao, X.

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

Zheng, X.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Zhuromskyy, O.

Adv. Mater. (2)

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. S. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22), 2681–2688 (2011).
[Crossref] [PubMed]

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48(9), 1127–1137 (2001).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

J. Ceram. Soc. Jpn. (1)

J. Qiu, H. Kanbara, H. Nasu, and K. Hirao, “Wavelength dispersions of the Faraday effect in chalcogenide glasses,” J. Ceram. Soc. Jpn. 106(1230), 228–230 (1998).
[Crossref]

J. Chem. Phys. (1)

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

J. Mater. Res. (1)

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

J. Non-Cryst. Solid (1)

F. Skuban, S. Lukic, D. Petrovic, and I. Guth, “Refractive-index dispersion of glassy semiconductors in the pseudo-binary As2Se3-SbSI system,” J. Non-Cryst. Solid 355, 2059–2062 (2009).

J. Non-Cryst. Solids (3)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[Crossref]

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

H. Guo, H. Tao, Y. Gong, and X. Zhao, “Preparation and properties of chalcogenide glasses in the GeS2-Sb2S3-CdS system,” J. Non-Cryst. Solids 354(12-13), 1159–1163 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Taki, Y. Miyazaki, and Y. Akao, “Optical propagation properties in gyromagnetic waveguides using faraday effects of YIG thin films on GGG substrates,” Jpn. J. Appl. Phys. 19(5), 925–938 (1980).
[Crossref]

Laser Photonics Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Nat. Commun. (1)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Commun. (1)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Proc. SPIE (1)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao, “Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1351–1356 (2007).
[Crossref] [PubMed]

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Other (4)

J. A. Dean, Lange’s Handbook of Chemistry, 15th Ed., (McGraw-Hill Book Company, 1999), Section 4.

J. M. Weber, Handbook of Optical Materials (CRC, 2003), Section 2.7.1.

Test Methods of Colorless Optical Glass-Part 9: Coefficient of Optical Absorption, State Standard of the People’s Republic of China, GB/T 7962.9–2010.

M. J. Weber, Handbook of Optical Materials (CRC, 2003), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic setup for Verdet constant measurement of glasses.
Fig. 2
Fig. 2 Glass-forming region in the GeS2-In2S3-PbI2 pseudoternary system. Series A: (100-x) (0.8GeS2 · 0.2In2S3) · xPbI2, Series B: 85((1-x) GeS2 · xIn2S3) · 15PbI2, Series C: (100-x) GeS2 · xIn2S3, Series D: (100-x)GeS2 · xPbI2. The dashed line is drawn as a guide for the eye.
Fig. 3
Fig. 3 DSC-TG curve of 72GeS2· 18In2S3· 10PbI2 chalcogenide glass with the heating rate of 10 K/min.
Fig. 4
Fig. 4 Dispersion of refractive index for (100-x) (0.8GeS2·0.2In2S3) · xPbI2 (x = 5, 10, 15, 20, 25) series glasses. The inset shows the relationship between the refractive index and the content of PbI2 at wavelength 808nm. The line is drawn as guides for the eye.
Fig. 5
Fig. 5 Optical absorption spectra of (100-x) (0.8GeS2·0.2In2S3) · xPbI2 series glasses. The inset shows the absorption spectra from 400nm to 1500nm.
Fig. 6
Fig. 6 Relationship between the Verdet constants and the component of (100-x) (0.8GeS2·0.2In2S3) · xPbI2 glasses at 635, 808, 980 and 1319 nm, respectively. Dashed lines are drawn as guides for the eyes.
Fig. 7
Fig. 7 Wavelength dependence of the Verdet constant for 60GeS2·15In2S3·25PbI2 glass.
Fig. 8
Fig. 8 Temperature dependence of the Verdet constant at 635 nm for 60GeS2·15In2S3·25PbI2 and Tb3+ doped aluminosilicate glass. Dashed lines are drawn as guides for the eye.
Fig. 9
Fig. 9 The evolution of the FOM as (a) the wavelength for 68GeS2·17In2S3·15PbI2 glass; (b) the molar content of PbI2 for (100-x) (0.8GeS2·0.2In2S3) ·xPbI2 (x = 5, 10, 15, 20, 25) glasses at 635, 808, 980 and 1319 nm. Dashed lines are drawn as guides for the eye.

Tables (3)

Tables Icon

Table 1 Thermal properties of (100- x)(0.8GeS2·0.2In2S3) · xPbI2 chalcogenide glasses

Tables Icon

Table 2 Fitting constants of the refractive index for (100-x) (0.8GeS2·0.2In2S3) · xPbI2 glasses

Tables Icon

Table 3 The values of V, α, and FOM for all examined samples.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V= θ BL
n=A+ B λ 2 + C λ 4
α= 1 d { 2ln[ 1 ( n1 n+1 ) 2 ]+ln[ 1+ ( n1 n+1 ) 4 ]lnT }
V= eλ 2m c 2 dn dλ
FOM= V α

Metrics